qgallouedec HF staff commited on
Commit
ec9b09e
·
1 Parent(s): 16f5fe6

dataset v2 and pybullet

Browse files
Files changed (2) hide show
  1. app.py +1 -1
  2. src/backend.py +57 -73
app.py CHANGED
@@ -63,7 +63,7 @@ pre, code {
63
 
64
 
65
  REPO_ID = "open-rl-leaderboard/leaderboard"
66
- RESULTS_REPO = "open-rl-leaderboard/results"
67
 
68
 
69
  links_md = f"""
 
63
 
64
 
65
  REPO_ID = "open-rl-leaderboard/leaderboard"
66
+ RESULTS_REPO = "open-rl-leaderboard/results_v2"
67
 
68
 
69
  links_md = f"""
src/backend.py CHANGED
@@ -2,11 +2,9 @@ import fnmatch
2
  import importlib
3
  import json
4
  import os
5
- import re
6
  import shutil
7
  import sys
8
- import tempfile
9
- import time
10
  import zipfile
11
  from pathlib import Path
12
  from typing import Optional
@@ -15,7 +13,8 @@ import numpy as np
15
  import rl_zoo3.import_envs # noqa: F401 pylint: disable=unused-import
16
  import torch as th
17
  import yaml
18
- from huggingface_hub import CommitOperationAdd, HfApi
 
19
  from huggingface_hub.utils import EntryNotFoundError
20
  from huggingface_sb3 import EnvironmentName, ModelName, ModelRepoId, load_from_hub
21
  from requests.exceptions import HTTPError
@@ -118,6 +117,16 @@ ALL_ENV_IDS = [
118
  "Reacher-v4",
119
  "Swimmer-v4",
120
  "Walker2d-v4",
 
 
 
 
 
 
 
 
 
 
121
  ]
122
 
123
 
@@ -504,85 +513,59 @@ def evaluate(
504
  logger = setup_logger(__name__)
505
 
506
  API = HfApi(token=os.environ.get("TOKEN"))
507
- RESULTS_REPO = "open-rl-leaderboard/results"
508
 
509
 
510
  def _backend_routine():
511
  # List only the text classification models
512
- rl_models = list(API.list_models(filter=["reinforcement-learning", "stable-baselines3"]))
513
- logger.info(f"Found {len(rl_models)} RL models")
514
- compatible_models = []
515
- for model in rl_models:
516
- compatible_models.append((model.modelId, model.sha))
517
-
518
- logger.info(f"Found {len(compatible_models)} compatible models")
519
-
520
  # Get the results
521
- pattern = re.compile(r"^[^/]*/[^/]*/[^/]*results_[a-f0-9]+\.json$")
522
- filenames = API.list_repo_files(RESULTS_REPO, repo_type="dataset")
523
- filenames = [filename for filename in filenames if pattern.match(filename)]
524
-
525
- evaluated_models = set()
526
- for filename in filenames:
527
- path = API.hf_hub_download(repo_id=RESULTS_REPO, filename=filename, repo_type="dataset")
528
- with open(path) as fp:
529
- report = json.load(fp)
530
- evaluated_models.add((report["config"]["model_id"], report["config"]["model_sha"]))
531
-
532
- # Find the models that are not associated with any results
533
- pending_models = list(set(compatible_models) - evaluated_models)
534
  logger.info(f"Found {len(pending_models)} pending models")
535
 
536
  if len(pending_models) == 0:
537
  return None
538
 
 
 
 
 
 
539
  # Run an evaluation on the models
540
- with tempfile.TemporaryDirectory() as tmp_dir:
541
- for model_id, sha in pending_models:
542
- time.sleep(60)
543
- commits = []
544
- model_info = API.model_info(model_id, revision=sha)
545
-
546
- # Extract the environment IDs from the tags (usually only one)
547
- env_ids = pattern_match(model_info.tags, ALL_ENV_IDS)
548
- if len(env_ids) == 0:
549
- logger.error(f"No environment found for {model_id}")
550
- continue
551
- else:
552
- env = env_ids[0]
553
- user_id, repo_name = model_id.split("/")
554
- algo = model_info.model_index[0]["name"].lower()
555
-
556
- logger.info(f"Running evaluation on {model_id}")
557
- report = {"config": {"model_id": model_id, "model_sha": sha}}
558
- try:
559
- episodic_returns = evaluate(
560
- user_id, repo_name, env, "rl-trained-agents", algo, no_render=True, verbose=1
561
- )
562
- evaluations = {env: {"episodic_returns": episodic_returns}}
563
- except Exception as e:
564
- logger.error(f"Error evaluating {model_id}: {e}")
565
- evaluations = None
566
-
567
- if evaluations is not None:
568
- report["results"] = evaluations
569
- report["status"] = "DONE"
570
- else:
571
- report["status"] = "FAILED"
572
-
573
- # Update the results
574
- dumped = json.dumps(report, indent=2)
575
- path_in_repo = f"{model_id}/results_{sha}.json"
576
- local_path = os.path.join(tmp_dir, path_in_repo)
577
- os.makedirs(os.path.dirname(local_path), exist_ok=True)
578
- with open(local_path, "w") as f:
579
- f.write(dumped)
580
-
581
- commits.append(CommitOperationAdd(path_in_repo=path_in_repo, path_or_fileobj=local_path))
582
-
583
- API.create_commit(
584
- repo_id=RESULTS_REPO, commit_message="Add evaluation results", operations=commits, repo_type="dataset"
585
- )
586
 
587
 
588
  def backend_routine():
@@ -593,4 +576,5 @@ def backend_routine():
593
 
594
 
595
  if __name__ == "__main__":
596
- backend_routine()
 
 
2
  import importlib
3
  import json
4
  import os
5
+ import random
6
  import shutil
7
  import sys
 
 
8
  import zipfile
9
  from pathlib import Path
10
  from typing import Optional
 
13
  import rl_zoo3.import_envs # noqa: F401 pylint: disable=unused-import
14
  import torch as th
15
  import yaml
16
+ from datasets import load_dataset
17
+ from huggingface_hub import HfApi
18
  from huggingface_hub.utils import EntryNotFoundError
19
  from huggingface_sb3 import EnvironmentName, ModelName, ModelRepoId, load_from_hub
20
  from requests.exceptions import HTTPError
 
117
  "Reacher-v4",
118
  "Swimmer-v4",
119
  "Walker2d-v4",
120
+ # PyBullet
121
+ "AntBulletEnv-v0",
122
+ "HalfCheetahBulletEnv-v0",
123
+ "HopperBulletEnv-v0",
124
+ "HumanoidBulletEnv-v0",
125
+ "InvertedDoublePendulumBulletEnv-v0",
126
+ "InvertedPendulumSwingupBulletEnv-v0",
127
+ "MinitaurBulletEnv-v0",
128
+ "ReacherBulletEnv-v0",
129
+ "Walker2DBulletEnv-v0",
130
  ]
131
 
132
 
 
513
  logger = setup_logger(__name__)
514
 
515
  API = HfApi(token=os.environ.get("TOKEN"))
516
+ RESULTS_REPO = "open-rl-leaderboard/results_v2"
517
 
518
 
519
  def _backend_routine():
520
  # List only the text classification models
521
+ sb3_models = [
522
+ (model.modelId, model.sha) for model in API.list_models(filter=["reinforcement-learning", "stable-baselines3"])
523
+ ]
524
+ logger.info(f"Found {len(sb3_models)} SB3 models")
 
 
 
 
525
  # Get the results
526
+ dataset = load_dataset(
527
+ RESULTS_REPO, split="train", download_mode="force_redownload", verification_mode="no_checks"
528
+ )
529
+ evaluated_models = [("/".join([x["user_id"], x["model_id"]]), x["sha"]) for x in dataset]
530
+ pending_models = list(set(sb3_models) - set(evaluated_models))
 
 
 
 
 
 
 
 
531
  logger.info(f"Found {len(pending_models)} pending models")
532
 
533
  if len(pending_models) == 0:
534
  return None
535
 
536
+ # Select a random model
537
+ repo_id, sha = random.choice(pending_models)
538
+ user_id, model_id = repo_id.split("/")
539
+ row = {"model_id": model_id, "user_id": user_id, "sha": sha}
540
+
541
  # Run an evaluation on the models
542
+ model_info = API.model_info(repo_id, revision=sha)
543
+
544
+ # Extract the environment IDs from the tags (usually only one)
545
+ env_ids = pattern_match(model_info.tags, ALL_ENV_IDS)
546
+ if len(env_ids) > 0:
547
+ env = env_ids[0]
548
+ logger.info(f"Running evaluation on {user_id}/{model_id}")
549
+ algo = model_info.model_index[0]["name"].lower()
550
+
551
+ try:
552
+ episodic_returns = evaluate(user_id, model_id, env, "rl-trained-agents", algo, no_render=True, verbose=1)
553
+ row["status"] = "DONE"
554
+ row["env_id"] = env
555
+ row["episodic_returns"] = episodic_returns
556
+ except Exception as e:
557
+ logger.error(f"Error evaluating {model_id}: {e}")
558
+ row["status"] = "FAILED"
559
+
560
+ else:
561
+ logger.error(f"No environment found for {model_id}")
562
+ row["status"] = "FAILED"
563
+
564
+ dataset = load_dataset(
565
+ RESULTS_REPO, split="train", download_mode="force_redownload", verification_mode="no_checks"
566
+ ) # Reload the dataset, in case it was updated
567
+ dataset = dataset.add_item(row)
568
+ dataset.push_to_hub(RESULTS_REPO, split="train")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569
 
570
 
571
  def backend_routine():
 
576
 
577
 
578
  if __name__ == "__main__":
579
+ while True:
580
+ backend_routine()