File size: 3,982 Bytes
da67f65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f24bec
0b3b4fe
da67f65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import datetime
from huggingface_hub import Repository
import os
import pandas as pd
import streamlit as st
import altair as alt
import numpy as np
import plotly.graph_objects as go

today = datetime.date.today()
year, week, _ = today.isocalendar()

DATASET_REPO_URL = (
    "https://huggingface.co/datasets/huggingface/transformers-stats-space-data"
)

DATA_FILENAME = f"data_{week}_{year}.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)

MODELS_TO_TRACK = ["wav2vec2", "whisper"]

repo = Repository(local_dir="data", clone_from=DATASET_REPO_URL)
repo.git_pull()

valid_weeks = []
download_results = []
model_download_results = {model_name: [] for model_name in MODELS_TO_TRACK}

# loop over past data, finding where we have data saved (valid weeks) and tracking monthly downloads for each week
for i in range(1, week + 1)[::-1]:
    data_filename = f"data_{i}_{year}.csv"
    data_file = os.path.join("data", data_filename)

    if os.path.exists(data_file):
        valid_weeks.append(i)

        dataframe = pd.read_csv(data_file)
        df_audio = dataframe[dataframe["modality"] == "audio"]

        audio_int_downloads = {model: int(x.replace(",", "")) for model, x in
                               zip(df_audio["model_names"], df_audio["num_downloads"].values)}

        download_results.append(sum(audio_int_downloads.values()))
        for model_name in MODELS_TO_TRACK:
            model_download_results[model_name].append(audio_int_downloads.get(model_name))

last_year = year - 1
last_week = 52
data_filename = f"data_{last_week}_{last_year}.csv"
data_file = os.path.join("data", data_filename)

if os.path.exists(data_file):
    valid_weeks.append(0)

    dataframe = pd.read_csv(data_file)
    df_audio = dataframe[dataframe["modality"] == "audio"]

    audio_int_downloads = {model: int(x.replace(",", "")) for model, x in
                           zip(df_audio["model_names"], df_audio["num_downloads"].values)}

    download_results.append(sum(audio_int_downloads.values()))
    for model_name in MODELS_TO_TRACK:
        model_download_results[model_name].append(audio_int_downloads.get(model_name))

fig = go.Figure()
fig.update_layout(
    title="Monthly downloads",
    xaxis_title="Week",
    yaxis_title="Downloads",)

fig.add_trace(
            go.Scatter(x=valid_weeks, y=download_results, mode='lines+markers', name="Total")
        )

for model_name in MODELS_TO_TRACK:
    fig.add_trace(
                go.Scatter(x=valid_weeks, y=model_download_results[model_name], mode='lines+markers', name=model_name)
            )

st.title("Audio Stats")
st.plotly_chart(fig)


week = st.selectbox(
    "Week",
    valid_weeks,
    index=0,
    help="Filter the download results by week"
)

DATA_FILENAME = f"data_{week}_{year}.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)

with open(DATA_FILE, "r") as f:
    dataframe = pd.read_csv(DATA_FILE)

st.header(f"Stats for year {year} and week {week}")

# print audio
df_audio = dataframe[dataframe["modality"] == "audio"]
audio_int_downloads = np.array(
    [int(x.replace(",", "")) for x in df_audio["num_downloads"].values]
)
source = pd.DataFrame(
    {
        "Number of total downloads": audio_int_downloads,
        "Model architecture name": df_audio["model_names"].values,
    }
)
bar_chart = (
    alt.Chart(source)
    .mark_bar()
    .encode(
        y="Number of total downloads",
        x=alt.X("Model architecture name", sort=None),
    )
)
st.subheader(f"Top audio downloads last 30 days")
st.altair_chart(bar_chart, use_container_width=True)

st.subheader("Audio stats last 30 days")

dataframe = dataframe[dataframe["modality"] == "audio"].drop("modality", axis=1)
dataframe.loc["Total"] = dataframe.sum(numeric_only=True)
total_audio_downloads = sum(audio_int_downloads)

# nice formatting
dataframe.at["Total", "num_downloads"] = "{:,}".format(total_audio_downloads)
dataframe.at["Total", "model_names"] = ""
dataframe.at["Total", "download_per_model"] = ""

st.table(dataframe)