patrickvonplaten's picture
improve
aed3125
raw
history blame
6.73 kB
import os
from datetime import datetime
import json
import matplotlib.ticker as ticker
from huggingface_hub import snapshot_download
from collections import defaultdict
import pandas as pd
import streamlit as st
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
plt.rcParams.update({'font.size': 40})
libraries = {
"open-source-metrics/transformers-dependents",
"open-source-metrics/diffusers-dependents",
"open-source-metrics/pytorch-image-models-dependents",
"open-source-metrics/datasets-dependents",
"open-source-metrics/gradio-dependents",
"open-source-metrics/accelerate-dependents",
"open-source-metrics/evaluate-dependents",
"open-source-metrics/tokenizers-dependents",
"open-source-metrics/optimum-dependents",
"open-source-metrics/hub-docs-dependents",
"open-source-metrics/huggingface_hub-dependents",
}
MAP = {"-".join(k.split("/")[-1].split("-")[:-1]): k for k in libraries}
selected_libraries = st.multiselect(
'Choose libraries',
list(MAP.keys())
)
def get_frames(option):
cached_folder = snapshot_download(option, repo_type="dataset")
num_dependents = defaultdict(int)
num_stars_all_dependents = defaultdict(int)
def load_json_files(directory):
for subdir, dirs, files in os.walk(directory):
for file in files:
if file.endswith('.json'):
file_path = os.path.join(subdir, file)
date = "_".join(file_path.split(".")[-2].split("/")[-3:])
with open(file_path, 'r') as f:
data = json.load(f)
# Process the JSON data as needed
if "name" in data and "stars" in data:
num_dependents[date] = len(data["name"])
num_stars_all_dependents[date] = sum(data["stars"])
# Replace 'your_directory_path' with the path to the directory containing your '11' and '12' folders
load_json_files(cached_folder)
def sort_dict_by_date(d):
# Convert date strings to datetime objects and sort
sorted_tuples = sorted(d.items(), key=lambda x: datetime.strptime(x[0], '%Y_%m_%d'))
# Convert back to dictionary if needed
return defaultdict(int, sorted_tuples)
def remove_incorrect_entries(data):
# Convert string dates to datetime objects for easier comparison
sorted_data = sorted(data.items(), key=lambda x: datetime.strptime(x[0], '%Y_%m_%d'))
# Initialize a new dictionary to store the corrected data
corrected_data = defaultdict(int)
# Variable to keep track of the number of dependents on the previous date
previous_dependents = None
for date, dependents in sorted_data:
# If the current number of dependents is not less than the previous, add it to the corrected data
if previous_dependents is None or dependents >= previous_dependents:
corrected_data[date] = dependents
previous_dependents = dependents
return corrected_data
def interpolate_missing_dates(data):
# Convert string dates to datetime objects
temp_data = {datetime.strptime(date, '%Y_%m_%d'): value for date, value in data.items()}
# Find the min and max dates to establish the range
min_date, max_date = min(temp_data.keys()), max(temp_data.keys())
# Generate a date range
current_date = min_date
while current_date <= max_date:
# If the current date is missing
if current_date not in temp_data:
# Find previous and next dates that are present
prev_date = current_date - timedelta(days=1)
next_date = current_date + timedelta(days=1)
while prev_date not in temp_data:
prev_date -= timedelta(days=1)
while next_date not in temp_data:
next_date += timedelta(days=1)
# Linear interpolation
prev_value = temp_data[prev_date]
next_value = temp_data[next_date]
interpolated_value = prev_value + ((next_value - prev_value) * ((current_date - prev_date) / (next_date - prev_date)))
temp_data[current_date] = interpolated_value
current_date += timedelta(days=1)
# Convert datetime objects back to string format
interpolated_data = defaultdict(int, {date.strftime('%Y_%m_%d'): int(value) for date, value in temp_data.items()})
return interpolated_data
num_dependents = remove_incorrect_entries(num_dependents)
num_stars_all_dependents = remove_incorrect_entries(num_stars_all_dependents)
num_dependents = interpolate_missing_dates(num_dependents)
num_stars_all_dependents = interpolate_missing_dates(num_stars_all_dependents)
num_dependents = sort_dict_by_date(num_dependents)
num_stars_all_dependents = sort_dict_by_date(num_stars_all_dependents)
num_dependents_df = pd.DataFrame(list(num_dependents.items()), columns=['Date', 'Value'])
num_cum_stars_df = pd.DataFrame(list(num_stars_all_dependents.items()), columns=['Date', 'Value'])
num_dependents_df['Date'] = pd.to_datetime(num_dependents_df['Date'], format='%Y_%m_%d')
num_cum_stars_df['Date'] = pd.to_datetime(num_cum_stars_df['Date'], format='%Y_%m_%d')
num_dependents_df.set_index('Date', inplace=True)
num_dependents_df = num_dependents_df.resample('D').asfreq()
num_dependents_df['Value'] = num_dependents_df['Value'].interpolate()
num_cum_stars_df.set_index('Date', inplace=True)
num_cum_stars_df = num_cum_stars_df.resample('D').asfreq()
num_cum_stars_df['Value'] = num_cum_stars_df['Value'].interpolate()
return num_dependents_df, num_cum_stars_df
lib_frames = {l: get_frames(MAP[l]) for l in selected_libraries}
plt.figure(figsize=(40, 24))
plt.gca().yaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}'))
for l, (df_dep, _) in lib_frames.items():
plt.plot(df_dep.index, df_dep['Value'], label=l, marker='o')
plt.xlabel('Date')
plt.ylabel('# Dependencies')
plt.legend()
plt.title('Dependencies History')
st.pyplot(plt)
# Display in Streamlit
plt.figure(figsize=(40, 24))
plt.gca().yaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}'))
for l, (_, df_stars) in lib_frames.items():
plt.plot(df_stars.index, df_stars['Value'], label=l, marker='o')
plt.xlabel('Date')
plt.ylabel('SUM stars of dependencies')
plt.legend()
plt.title('Dependents Stars History')
st.pyplot(plt)