File size: 35,333 Bytes
de86128
 
 
 
46c15e8
de86128
78f7e42
 
 
1581d20
6c21ae3
 
818059f
6c21ae3
8be36e0
6c21ae3
 
 
 
 
8be36e0
 
 
 
6c21ae3
 
 
8be36e0
6c21ae3
 
 
 
8be36e0
 
6c21ae3
8be36e0
1581d20
 
6c21ae3
 
8be36e0
1581d20
6c21ae3
 
 
 
 
3a31181
6c21ae3
 
 
1581d20
 
b7e795a
1581d20
b7e795a
1581d20
 
6c21ae3
 
 
 
 
 
 
 
78f7e42
 
 
 
 
 
 
6c21ae3
 
1581d20
8be36e0
1581d20
6c21ae3
 
 
 
 
8be36e0
6c21ae3
 
 
 
 
 
8be36e0
6c21ae3
 
 
 
78f7e42
1581d20
 
 
 
 
 
 
78f7e42
 
6c21ae3
1581d20
8be36e0
1581d20
 
 
 
 
 
 
6c21ae3
1581d20
 
613ab12
 
8be36e0
6c21ae3
8be36e0
 
 
 
78f7e42
613ab12
78f7e42
613ab12
1581d20
 
 
 
 
 
 
 
 
 
8be36e0
 
 
 
 
 
 
 
613ab12
8be36e0
 
 
 
78f7e42
 
 
 
8be36e0
1581d20
b7e795a
1581d20
 
 
8be36e0
78f7e42
 
 
 
1581d20
8be36e0
 
 
1581d20
78f7e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8be36e0
78f7e42
 
 
 
 
1581d20
 
 
 
 
 
de86128
1581d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8be36e0
 
 
 
 
 
1581d20
b7e795a
1581d20
 
 
 
 
 
 
 
8be36e0
 
78f7e42
 
 
 
 
 
 
 
 
8be36e0
1581d20
8be36e0
78f7e42
8be36e0
78f7e42
 
 
 
1581d20
8be36e0
1581d20
78f7e42
 
 
 
 
8be36e0
78f7e42
 
 
 
 
 
8be36e0
78f7e42
 
 
1581d20
78f7e42
1581d20
 
 
 
 
 
 
 
 
78f7e42
1581d20
 
 
 
78f7e42
1581d20
 
 
78f7e42
 
1581d20
 
 
 
 
 
 
 
 
 
 
 
78f7e42
1581d20
78f7e42
 
 
 
1581d20
 
 
 
 
 
 
46c15e8
1581d20
8be36e0
 
 
 
 
78f7e42
 
 
 
8be36e0
 
78f7e42
8be36e0
78f7e42
 
 
 
1581d20
78f7e42
1581d20
78f7e42
 
1581d20
78f7e42
 
 
 
 
 
 
 
 
 
8be36e0
78f7e42
 
 
 
1581d20
 
 
8be36e0
1581d20
8be36e0
1581d20
8be36e0
1581d20
78f7e42
 
 
 
 
1581d20
78f7e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1581d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e795a
56ea52e
1581d20
 
 
8be36e0
78f7e42
1581d20
 
 
8be36e0
1581d20
8be36e0
1581d20
8be36e0
1581d20
8be36e0
1581d20
78f7e42
 
 
 
 
 
 
 
 
 
 
 
 
 
1581d20
 
8be36e0
1581d20
8be36e0
1581d20
8be36e0
1581d20
78f7e42
 
 
 
 
 
 
 
 
 
 
56ea52e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1581d20
 
 
56ea52e
b7e795a
1581d20
 
 
8be36e0
78f7e42
1581d20
 
8be36e0
 
 
1581d20
8be36e0
1581d20
8be36e0
 
 
1581d20
78f7e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1581d20
 
 
8be36e0
1581d20
 
 
 
 
8be36e0
1581d20
 
 
 
 
 
 
8be36e0
1581d20
8be36e0
 
1581d20
8be36e0
 
 
 
1581d20
 
 
 
 
46c15e8
1581d20
 
8be36e0
 
 
 
 
 
 
 
1581d20
 
8be36e0
 
 
1581d20
8be36e0
1581d20
8be36e0
1581d20
 
 
 
 
 
 
 
 
8be36e0
 
 
 
 
 
 
1581d20
 
 
 
 
 
 
b7e795a
1581d20
 
 
 
8be36e0
78f7e42
1581d20
 
 
 
8be36e0
 
 
 
 
78f7e42
 
 
 
1581d20
78f7e42
1581d20
78f7e42
1581d20
78f7e42
 
 
 
 
 
 
 
1581d20
8be36e0
78f7e42
1581d20
78f7e42
1581d20
78f7e42
 
 
 
 
 
 
1581d20
 
8be36e0
78f7e42
 
 
 
 
1581d20
78f7e42
1581d20
78f7e42
 
 
 
 
 
 
1581d20
 
78f7e42
 
1581d20
 
 
 
 
 
 
 
 
 
 
b7e795a
1581d20
 
 
 
 
 
46c15e8
1581d20
46c15e8
b7e795a
1581d20
 
 
de86128
 
1581d20
 
de86128
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
import streamlit as st
import pandas as pd
from ast import literal_eval
import altair as alt
import matplotlib.pyplot as plt

from utils import process_dataset, eval_tags, change_and_delta
from language import process_for_lang, filter_multilinguality
from pipelines import filter_pipeline_data

def main():
    # Pick revision at top
    supported_revisions = ["29_05_23", "22_05_23", "15_05_23", "08_05_23", "01_05_23", "24_04_23", "17_04_23", "10_04_23", "03_04_23", "27_03_23", "20_03_23", "13_03_23", "06_03_23", "27_02_23", "20_02_23", "13_02_23","06_02_23", "30_01_23", "24_01_23", "16_01_23", "10_01_23", "02_01_23", "19_12_22", "12_12_22", "05_12_22", "28_11_22", "22_11_22", "14_11_22", "07_11_22", "31_10_22", "24_10_22", "17_10_22", "10_10_22", "27_09_22"]
    col1, col2, col3 = st.columns(3)
    with col1:
        new = st.selectbox(
            'Last revision',
            supported_revisions,
            index=0)
    with col2:
        base = st.selectbox(
            'Old revision',
            supported_revisions,
            index=1)
    with col3:
        base_old = st.selectbox(
            'Very old revision',
            supported_revisions,
            index=2)

    # Process dataset
    old_old_data = process_dataset(base_old)
    old_data = process_dataset(base)
    data = process_dataset(new)
    old_old_data["tags"] = old_old_data.apply(eval_tags, axis=1)
    old_data["tags"] = old_data.apply(eval_tags, axis=1)
    data["tags"] = data.apply(eval_tags, axis=1)

    # High level count of models and rate of change
    total_samples_old_old = old_old_data.shape[0]
    total_samples_old = old_data.shape[0]
    total_samples = data.shape[0]

    curr_change, delta = change_and_delta(total_samples_old_old, total_samples_old, total_samples)

    col1, col2 = st.columns(2)
    with col1:
        st.metric(label="Total public models", value=total_samples, delta=total_samples-total_samples_old)
        
    with col2:
        st.metric(label="Rate of change", value=curr_change, delta=delta)

    # Tabs don't work in Spaces st version
    tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8 = st.tabs(["Language", "License", "Pipeline", "Social Features", "Libraries", "Model Cards", "Super users", "Raw Data"])

    with tab1:
        st.header("Languages info")

        filtered_data = data.copy()
        old_filtered_data = old_data.copy()
        old_old_filtered_data = old_old_data.copy()

        modality = st.selectbox(
            'Modalities',
            ["All", "NLP", "Audio", "Multimodal"])

        filtered_data, no_lang_count, total_langs, langs = process_for_lang(filtered_data, modality)
        old_filtered_data, no_lang_count_old, total_langs_old, langs_old = process_for_lang(old_filtered_data, modality)
        old_old_filtered_data, no_lang_count_old_old, total_langs_old_old, _ = process_for_lang(old_old_filtered_data, modality)

        v = filtered_data.shape[0]-no_lang_count
        v_old = old_filtered_data.shape[0]-no_lang_count_old
        v_old_old = old_old_filtered_data.shape[0]-no_lang_count_old_old

        col1, col2 = st.columns(2)
        with col1:
            st.metric(label="Language Specified", value=v, delta=int(v-v_old))
        with col2:
            curr_change, delta = change_and_delta(v_old_old, v_old, v)
            st.metric(label="Language Specified Rate of Change", value=curr_change, delta=delta)

        col1, col2 = st.columns(2)
        with col1:
            st.metric(label="No Language Specified", value=no_lang_count, delta=int(no_lang_count-no_lang_count_old))
        with col2:
            curr_change, delta = change_and_delta(no_lang_count_old_old, no_lang_count_old, no_lang_count)
            st.metric(label="No Language Specified Rate of Change", value=curr_change, delta=delta)

        col1, col2 = st.columns(2)
        with col1:
            st.metric(label="Total Unique Languages", value=total_langs, delta=int(total_langs-total_langs_old))
        with col2:
            curr_change, delta = change_and_delta(total_langs_old_old, total_langs_old, total_langs)
            st.metric(label="Total Unique Languages Rate of Change", value=curr_change, delta=delta)
        st.text(f"New languages {set(langs)-set(langs_old)}")
        st.text(f"Lost languages {set(langs_old)-set(langs)}")

        st.subheader("Count of languages per model repo")
        st.text("Some repos are for multiple languages, so the count is greater than 1")
        linguality = st.selectbox(
            'All or just Multilingual',
            ["All", "Just Multilingual", "Three or more languages"])

        models_with_langs = filter_multilinguality(filtered_data, linguality)
        models_with_langs_old = filter_multilinguality(old_filtered_data, linguality)

        df1 = models_with_langs['language_count'].value_counts()
        df1_old = models_with_langs_old['language_count'].value_counts()
        st.bar_chart(df1)

        st.subheader("Most frequent languages")
        linguality_2 = st.selectbox(
            'All or filtered',
            ["All", "No English", "Remove top 10"])

        models_with_langs = filtered_data[filtered_data["language_count"] > 0]
        langs = models_with_langs["languages"].explode()
        langs = langs[langs != {}]
        orig_d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index()
        d = orig_d
        
        models_with_langs_old = old_filtered_data[old_filtered_data["language_count"] > 0]
        langs = models_with_langs_old["languages"].explode()
        langs = langs[langs != {}]
        orig_d_old = langs.value_counts().rename_axis("language").to_frame('counts').reset_index()

        if linguality_2 == "No English":
            d = orig_d.iloc[1:]
        elif linguality_2 == "Remove top 10":
            d = orig_d.iloc[10:]

        # Just keep top 25 to avoid vertical scroll
        d = d.iloc[:25]

        st.write(alt.Chart(d).mark_bar().encode(
            x='counts',
            y=alt.X('language', sort=None)
        ))

        st.subheader("Raw Data")
        l = df1.rename_axis("lang_count").reset_index().rename(columns={"language_count": "r_c"})
        l_old = df1_old.rename_axis("lang_count").reset_index().rename(columns={"language_count": "old_r_c"})
        final_data =  pd.merge(
            l, l_old, how="outer", on="lang_count"
        )
        final_data["diff"] = final_data["r_c"] - final_data["old_r_c"]
        st.dataframe(final_data)
        
        d = orig_d.astype(str)
        orig_d_old = orig_d_old.astype(str).rename(columns={"counts": "old_c"})
        final_data =  pd.merge(
            d, orig_d_old, how="outer", on="language"
        )
        final_data['counts'] = final_data['counts'].fillna(0).astype(int)
        final_data['old_c'] = final_data['old_c'].fillna(0).astype(int)
        final_data["diff"] = final_data["counts"] - final_data["old_c"]
        final_data['language'] = final_data['language'].astype(str)
        st.dataframe(final_data)
        
    with tab2:
        st.header("License info")

        no_license_count = data["license"].isna().sum()
        no_license_count_old = old_data["license"].isna().sum()
        no_license_count_old_old = old_old_data["license"].isna().sum()

        
        col1, col2 = st.columns(2)
        with col1:
            v = total_samples-no_license_count
            v_old = total_samples_old-no_license_count_old
            st.metric(label="License Specified", value=v, delta=int(v-v_old))
        with col2:
            v = total_samples-no_license_count
            v_old = total_samples_old-no_license_count_old
            v_old_old = total_samples_old-no_license_count_old_old
            curr_change, delta = change_and_delta(v_old_old, v_old, v)
            st.metric(label="License Specified Rate of Change", value=curr_change, delta=delta)

        col1, col2 = st.columns(2)
        with col1:
            st.metric(label="No License Specified", value=no_license_count, delta=int(no_license_count-no_license_count_old))
        with col2:
            curr_change, delta = change_and_delta(no_license_count_old_old, no_license_count_old, no_license_count)
            st.metric(label="No License Specified Rate of Change", value=curr_change, delta=delta)

        col1, col2 = st.columns(2)
        unique_licenses = len(data["license"].unique())
        unique_licenses_old = len(old_data["license"].unique())
        unique_licenses_old_old = len(old_old_data["license"].unique())
        with col1:
            st.metric(label="Total Unique Licenses", value=unique_licenses, delta=int(unique_licenses-unique_licenses_old))
        with col2:
            curr_change, delta = change_and_delta(unique_licenses_old_old, unique_licenses_old, unique_licenses)
            st.metric(label="Total Unique Licenses Rate of Change", value=curr_change, delta=delta)
        st.text(f"New licenses {set(data['license'].unique())-set(old_data['license'].unique())}")
        st.text(f"Old licenses {set(old_data['license'].unique())-set(data['license'].unique())}")

        st.subheader("Distribution of licenses per model repo")
        license_filter = st.selectbox(
            'All or filtered',
            ["All", "No Apache 2.0", "Remove top 10"])

        filter = 0
        if license_filter == "All":
            filter = 0
        elif license_filter == "No Apache 2.0":
            filter = 1
        else:
            filter = 2

        d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index()
        if filter == 1:
            d = d.iloc[1:]
        elif filter == 2:
            d = d.iloc[10:]

        # Just keep top 25 to avoid vertical scroll
        d = d.iloc[:25]

        st.write(alt.Chart(d).mark_bar().encode(
            x='counts',
            y=alt.X('license', sort=None)
        ))
        st.text("There are some edge cases, as old repos using lists of licenses.")

        st.subheader("Raw Data")
        d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index()
        d_old = old_data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index().rename(columns={"counts": "old_c"})
        final_data =  pd.merge(
            d, d_old, how="outer", on="license"
        )
        final_data["diff"] = final_data["counts"] - final_data["old_c"]
        st.dataframe(final_data)
        
    with tab3:
        st.header("Pipeline info")

        tags = data["tags"].explode()
        tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
        s = tags["tag"]
        s = s[s.apply(type) == str]
        unique_tags = len(s.unique())

        tags_old = old_data["tags"].explode()
        tags_old = tags_old[tags_old.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
        s_o = tags_old["tag"]
        s_o = s_o[s_o.apply(type) == str]
        unique_tags_old = len(s_o.unique())

        tags_old_old = old_old_data["tags"].explode()
        tags_old_old = tags_old_old[tags_old_old.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
        s_old_old = tags_old_old["tag"]
        s_old_old = s_old_old[s_old_old.apply(type) == str]
        unique_tags_old_old = len(s_old_old.unique())

        no_pipeline_count = data["pipeline"].isna().sum()
        no_pipeline_count_old = old_data["pipeline"].isna().sum()
        no_pipeline_count_old_old = old_old_data["pipeline"].isna().sum()

        col1, col2 = st.columns(2)
        v = total_samples-no_pipeline_count
        v_old = total_samples_old-no_pipeline_count_old
        v_old_old = total_samples_old_old-no_pipeline_count_old_old
        with col1:
            st.metric(label="# models that have any pipeline", value=v, delta=int(v-v_old))
        with col2:
            curr_change, delta = change_and_delta(v_old_old, v_old, v)
            st.metric(label="# models rate of change", value=curr_change, delta=delta)

        col1, col2 = st.columns(2)
        with col1:
            st.metric(label="No pipeline Specified", value=no_pipeline_count, delta=int(no_pipeline_count-no_pipeline_count_old))
        with col2:
            curr_change, delta = change_and_delta(no_pipeline_count_old_old, no_pipeline_count_old, no_pipeline_count)
            st.metric(label="No pipeline Specified rate of change", value=curr_change, delta=delta)

        col1, col2 = st.columns(2)
        with col1:
            st.metric(label="Total Unique Tags", value=unique_tags, delta=int(unique_tags-unique_tags_old))
        with col2:
            curr_change, delta = change_and_delta(unique_tags_old_old, unique_tags_old, unique_tags)
            st.metric(label="Total Unique Tags", value=curr_change, delta=delta)

        modality_filter = st.selectbox(
            'Modalities',
            ["All", "NLP", "CV", "Audio", "RL", "Multimodal", "Tabular"])

        st.subheader("High-level metrics")

        col1, col2, col3 = st.columns(3)
        with col1:
            p = st.selectbox(
                'What pipeline do you want to see?',
                ["all", *data["pipeline"].unique()]
            )
        with col2:
            l = st.selectbox(
                'What library do you want to see?',
                ["all", "not transformers", *data["library"].unique()]
            )
        with col3:
            f = st.selectbox(
                'What trf framework support?',
                ["all", "pytorch", "tensorflow", "jax"]
            ) 

        col1, col2 = st.columns(2)
        with col1:
            filt = st.multiselect(
                label="Tags (All by default)",
                options=s.unique(),
                default=None)
        with col2:
            o = st.selectbox(
                label="Operation (for tags)",
                options=["Any", "All", "None"]
            )       

        filtered_data, tags = filter_pipeline_data(data, modality_filter, p, l, f, filt, o)
        filtered_data_old, old_tags = filter_pipeline_data(old_data, modality_filter, p, l, f, filt, o)
        filtered_data_old_old, old_old_tags = filter_pipeline_data(old_old_data, modality_filter, p, l, f, filt, o)
        st.subheader("Pipeline breakdown")
        

        d = filtered_data["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index()
        columns_of_interest = ["downloads_30d", "likes", "pytorch", "tensorflow", "jax"]
        grouped_data = filtered_data.groupby("pipeline").sum()[columns_of_interest]
        final_data = pd.merge(
            d, grouped_data, how="outer", on="pipeline"
        )

        d_old = filtered_data_old["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index()
        grouped_data_old = filtered_data_old.groupby("pipeline").sum()[columns_of_interest]
        final_data_old = pd.merge(
            d_old, grouped_data_old, how="outer", on="pipeline"
        )

        d_old = filtered_data_old_old["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index()
        grouped_data_old_old = filtered_data_old_old.groupby("pipeline").sum()[columns_of_interest]

        sums = grouped_data.sum()
        sums_old = grouped_data_old.sum()
        sums_old_old = grouped_data_old_old.sum()

        col1, col2, col3, col4 = st.columns(4)
        v = filtered_data.shape[0]
        v_old = filtered_data_old.shape[0]
        v_old_old = filtered_data_old_old.shape[0]
        with col1:
            st.metric(label="Total models", value=v, delta=int(v - v_old))
        with col2:
            curr_change, delta = change_and_delta(v_old_old, v_old, v)
            st.metric(label="Total models rate of change", value=curr_change, delta=delta)
        with col3:
            st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"], delta=int(sums["downloads_30d"] - sums_old["downloads_30d"]))
        with col4:
            print(sums_old_old["downloads_30d"], sums_old["downloads_30d"], sums["downloads_30d"])
            curr_change, delta = change_and_delta(sums_old_old["downloads_30d"], sums_old["downloads_30d"], sums["downloads_30d"])
            st.metric(label="Cumulative Downloads (30d) rate of change", value=curr_change, delta=delta)

        col1, col2, col3 = st.columns(3)
        with col1:
            st.metric(label="Total unique pipelines", value=len(filtered_data["pipeline"].unique()))
        with col2:
            st.metric(label="Cumulative likes", value=sums["likes"], delta=int(sums["likes"] - sums_old["likes"]))
        with col3:
            curr_change, delta = change_and_delta(sums_old_old["likes"], sums_old["likes"], sums["likes"])
            st.metric(label="Cumulative Likes rate of change", value=curr_change, delta=delta)


        col1, col2, col3 = st.columns(3)
        with col1:
            st.metric(label="Total in PT", value=sums["pytorch"], delta=int(sums["pytorch"] - sums_old["pytorch"]))
        with col2:
            st.metric(label="Total in TF", value=sums["tensorflow"], delta=int(sums["tensorflow"] - sums_old["tensorflow"]))
        with col3:
            st.metric(label="Total in JAX", value=sums["jax"], delta=int(sums["jax"] - sums_old["jax"]))
        
        col1, col2 = st.columns(2)
        with col1:
            st.metric(label="Total unique libraries", value=len(filtered_data["library"].unique()))
        with col2:
            st.metric(label="Total unique modality", value=len(filtered_data["modality"].unique()))

            
        col1, col2 = st.columns(2)
        with col1:
            st.metric(label="Total transformers models", value=len(filtered_data[filtered_data["library"] == "transformers"]))
        with col2:
            st.metric(label="Total non transformers models", value=len(filtered_data[filtered_data["library"] != "transformers"]))

        st.metric(label="Unique Tags", value=len(tags), delta=int(len(tags) - len(old_tags)))
        st.text(f"New tags {set(tags)-set(old_tags)}")
        st.text(f"Lost tags {set(old_tags)-set(tags)}")

        st.subheader("Pipeline breakdown by modality")
        col1, col2 = st.columns(2)
        with col1:
            st.metric(label="Total CV models", value=len(filtered_data[filtered_data["modality"] == "cv"]))
        with col2:
            st.metric(label="Total NLP models", value=len(filtered_data[filtered_data["modality"] == "nlp"]))

        col1, col2 = st.columns(2)
        with col1:
            st.metric(label="Total Audio models", value=len(filtered_data[filtered_data["modality"] == "audio"]))
        with col2:
            st.metric(label="Total RL models", value=len(filtered_data[filtered_data["modality"] == "rl"]))

        col1, col2 = st.columns(2)
        with col1:
            st.metric(label="Total Tabular models", value=len(filtered_data[filtered_data["modality"] == "tabular"]))
        with col2:
            st.metric(label="Total Multimodal models", value=len(filtered_data[filtered_data["modality"] == "multimodal"]))

        st.subheader("Count of models per pipeline")
        st.write(alt.Chart(d).mark_bar().encode(
            x='counts',
            y=alt.X('pipeline', sort=None)
        ))

        st.subheader("Aggregated data")
        st.dataframe(final_data)

        st.subheader("Most common model types (specific to transformers)")
        d = filtered_data["model_type"].value_counts().rename_axis("model_type").to_frame('counts').reset_index()
        d = d.iloc[:15]
        st.write(alt.Chart(d).mark_bar().encode(
            x='counts',
            y=alt.X('model_type', sort=None)
        ))

        st.subheader("Most common library types (Learn more in library tab)")
        d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15)
        st.write(alt.Chart(d).mark_bar().encode(
            x='counts',
            y=alt.X('library', sort=None)
        ))
        
        st.subheader("Tags by count")
        tags = filtered_data["tags"].explode()
        tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
        st.write(alt.Chart(tags.head(30)).mark_bar().encode(
            x='counts',
            y=alt.X('tag', sort=None)
        ))
        
        st.subheader("Raw Data")
        columns_of_interest = [
            "repo_id", "author", "model_type", "files_per_repo", "library",
            "downloads_30d", "likes", "pytorch", "tensorflow", "jax"]
        raw_data = filtered_data[columns_of_interest]
        st.dataframe(raw_data)

        # todo : add activity metric


    with tab4:
        st.header("Social Features")

        columns_of_interest = ["prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"]
        sums = data[columns_of_interest].sum()
        sums_old = old_data[columns_of_interest].sum()
        sums_old_old = old_old_data[columns_of_interest].sum()

        col1, col2, col3, col4 = st.columns(4)
        with col1:
            st.metric(label="Total PRs", value=sums["prs_count"],delta=int(sums["prs_count"] - sums_old["prs_count"]))
        with col2:
            st.metric(label="PRs opened", value=sums["prs_open"], delta=int(sums["prs_open"] - sums_old["prs_open"]))
        with col3:
            st.metric(label="PRs merged", value=sums["prs_merged"], delta=int(sums["prs_merged"] - sums_old["prs_merged"]))
        with col4:
            st.metric(label="PRs closed", value=sums["prs_closed"], delta=int(sums["prs_closed"] - sums_old["prs_closed"]))

        col1, col2, col3, col4 = st.columns(4)
        with col1:
            curr_change, delta = change_and_delta(sums_old_old["prs_count"], sums_old["prs_count"], sums["prs_count"])
            st.metric(label="Total PRs change", value=curr_change,delta=delta)
        with col2:
            curr_change, delta = change_and_delta(sums_old_old["prs_open"], sums_old["prs_open"], sums["prs_open"])
            st.metric(label="PRs opened change", value=curr_change,delta=delta)
        with col3:
            curr_change, delta = change_and_delta(sums_old_old["prs_merged"], sums_old["prs_merged"], sums["prs_merged"])
            st.metric(label="PRs merged change", value=curr_change,delta=delta)
        with col4:
            curr_change, delta = change_and_delta(sums_old_old["prs_closed"], sums_old["prs_closed"], sums["prs_closed"])
            st.metric(label="PRs closed change", value=curr_change,delta=delta)

        col1, col2, col3 = st.columns(3)
        with col1:
            st.metric(label="Total discussions", value=sums["discussions_count"], delta=int(sums["discussions_count"] - sums_old["discussions_count"]))
        with col2:
            st.metric(label="Discussions open", value=sums["discussions_open"], delta=int(sums["discussions_open"] - sums_old["discussions_open"]))
        with col3:
            st.metric(label="Discussions closed", value=sums["discussions_closed"], delta=int(sums["discussions_closed"] - sums_old["discussions_closed"]))

        col1, col2, col3 = st.columns(3)
        with col1:
            curr_change, delta = change_and_delta(sums_old_old["discussions_count"], sums_old["discussions_count"], sums["discussions_count"])
            st.metric(label="Total discussions change", value=curr_change,delta=delta)
        with col2:
            curr_change, delta = change_and_delta(sums_old_old["discussions_open"], sums_old["discussions_open"], sums["discussions_open"])
            st.metric(label="Discussions open change", value=curr_change,delta=delta)
        with col3:
            curr_change, delta = change_and_delta(sums_old_old["discussions_closed"], sums_old["discussions_closed"], sums["discussions_closed"])
            st.metric(label="Discussions closed change", value=curr_change,delta=delta)

        likes = []
        for r in supported_revisions:
            likes.append(process_dataset(r)["likes"].sum()) 

        source = pd.DataFrame({
            'revision': supported_revisions[::-1],
            'likes': likes[::-1],
        })

        st.subheader("Total likes")
        st.write(alt.Chart(source).mark_bar().encode(
            x=alt.X('revision', sort=alt.EncodingSortField(field="revision", op="count", order='ascending')),
            y='likes'
        ))

        st.subheader("Likes Rate of Change")
        diffs = source["likes"].pct_change()
        source = pd.DataFrame({
            'revision': supported_revisions[::-1][1:],
            'likes_change': diffs[1:],
        })

        print(source[["revision", "likes_change"]])
        st.write(alt.Chart(source).mark_bar().encode(
            x=alt.X('revision', sort=alt.EncodingSortField(field="revision", op="count", order='ascending')),
            y='likes_change'
        ))
        


        st.subheader("Raw Data")
        filtered_data = data[["repo_id", "prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"]].sort_values("prs_count", ascending=False).reset_index(drop=True)
        st.dataframe(filtered_data)


    with tab5:
        st.header("Library info")

        no_library_count = data["library"].isna().sum()
        no_library_count_old = old_data["library"].isna().sum()
        no_library_count_old_old = old_old_data["library"].isna().sum()
        col1, col2, col3 = st.columns(3)
        with col1:
            v = total_samples-no_library_count
            v_old = total_samples_old-no_library_count_old
            st.metric(label="# models that have any library", value=v, delta=int(v-v_old))
        with col2:
            st.metric(label="No library Specified", value=no_library_count, delta=int(no_library_count-no_library_count_old))
        with col3:
            v = len(data["library"].unique())
            v_old = len(old_data["library"].unique())
            st.metric(label="Total Unique library", value=v, delta=int(v-v_old))

        col1, col2, col3 = st.columns(3)
        with col1:
            v = total_samples-no_library_count
            v_old = total_samples_old-no_library_count_old
            v_old_old = total_samples_old_old-no_library_count_old_old
            curr_change, delta = change_and_delta(v_old_old, v_old, v)
            st.metric(label="# models that have any library change", value=curr_change, delta=delta)
        with col2:
            curr_change, delta = change_and_delta(no_library_count_old_old, no_library_count_old, no_library_count)
            st.metric(label="No library Specified Change", value=curr_change, delta=delta)
        with col3:
            v = len(data["library"].unique())
            v_old = len(old_data["library"].unique())
            v_old_old = len(old_old_data["library"].unique())
            curr_change, delta = change_and_delta(v_old_old, v_old, v)
            st.metric(label="Total Unique library", value=curr_change, delta=delta)

        st.subheader("High-level metrics")
        filtered_data = data[data['library'].notna()]
        filtered_data_old = old_data[old_data['library'].notna()]

        col1, col2 = st.columns(2)
        with col1:
            lib = st.selectbox(
                'What library do you want to see? ',
                ["all", "not transformers", *filtered_data["library"].unique()]
            )
        with col2:
            pip = st.selectbox(
                'What pipeline do you want to see? ',
                ["all", *filtered_data["pipeline"].unique()]
            )

        if pip != "all" :
            filtered_data = filtered_data[filtered_data["pipeline"] == pip]
            filtered_data_old = filtered_data_old[filtered_data_old["pipeline"] == pip]
        if lib != "all" and lib != "not transformers":
            filtered_data = filtered_data[filtered_data["library"] == lib]
            filtered_data_old = filtered_data_old[filtered_data_old["library"] == lib]
        if lib == "not transformers":
            filtered_data = filtered_data[filtered_data["library"] != "transformers"]
            filtered_data_old = filtered_data_old[filtered_data_old["library"] != "transformers"]

        d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index()
        grouped_data = filtered_data.groupby("library").sum()[["downloads_30d", "likes"]]
        final_data = pd.merge(
            d, grouped_data, how="outer", on="library"
        )
        sums = grouped_data.sum()

        d_old = filtered_data_old["library"].value_counts().rename_axis("library").to_frame('counts').reset_index()
        grouped_data_old = filtered_data_old.groupby("library").sum()[["downloads_30d", "likes"]]
        final_data_old = pd.merge(
            d_old, grouped_data_old, how="outer", on="library"
        ).add_suffix('_old')
        final_data_old = final_data_old.rename(index=str, columns={"library_old": "library"})
        sums_old = grouped_data_old.sum()

        col1, col2, col3 = st.columns(3)
        with col1:
            v = filtered_data.shape[0]
            v_old = filtered_data_old.shape[0]
            st.metric(label="Total models", value=v, delta=int(v-v_old))
        with col2:
            st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"], delta=int(sums["downloads_30d"]-sums_old["downloads_30d"]))
        with col3:
            st.metric(label="Cumulative likes", value=sums["likes"], delta=int(sums["likes"]-sums_old["likes"]))

        st.subheader("Most common library types (Learn more in library tab)")
        d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15)
        st.write(alt.Chart(d).mark_bar().encode(
            x='counts',
            y=alt.X('library', sort=None)
        ))

        st.subheader("Aggregated Data")
        final_data =  pd.merge(
            final_data, final_data_old, how="outer", on="library"
        )
        final_data["counts_diff"] = final_data["counts"] - final_data["counts_old"]
        final_data["downloads_diff"] = final_data["downloads_30d"] - final_data["downloads_30d_old"]
        final_data["likes_diff"] = final_data["likes"] - final_data["likes_old"] 

        st.dataframe(final_data)
        
        st.subheader("Raw Data")
        columns_of_interest = ["repo_id", "author", "files_per_repo", "library", "downloads_30d", "likes"]
        filtered_data = filtered_data[columns_of_interest]
        st.dataframe(filtered_data)

    with tab6:
        st.header("Model cards")

        columns_of_interest = ["has_model_index", "has_metadata", "has_text", "text_length"]
        rows = data.shape[0]
        rows_old = old_data.shape[0]
        rows_old_old = old_old_data.shape[0]

        cond = data["has_model_index"] | data["has_text"]
        with_model_card = data[cond]
        c_model_card = with_model_card.shape[0]

        cond = old_data["has_model_index"] | old_data["has_text"]
        with_model_card_old = old_data[cond]
        c_model_card_old = with_model_card_old.shape[0]

        cond = old_old_data["has_model_index"] | old_old_data["has_text"]
        with_model_card_old_old = old_old_data[cond]
        c_model_card_old_old = with_model_card_old_old.shape[0]

        st.subheader("High-level metrics")
        col1, col2, col3, col4 = st.columns(4)
        with col1:
            st.metric(label="# with model card file", value=c_model_card, delta=int(c_model_card-c_model_card_old))
        with col2:
            curr_change, delta = change_and_delta(c_model_card_old_old, c_model_card_old, c_model_card)
            st.metric(label="# with model card file change", value=curr_change, delta=delta)   
        with col3:
            st.metric(label="# without model card file", value=rows-c_model_card, delta=int((rows-c_model_card)-(rows_old-c_model_card_old)))
        with col4:
            curr_change, delta = change_and_delta(rows_old_old-c_model_card_old_old, rows_old-c_model_card_old, rows-c_model_card)
            st.metric(label="# without model card file change", value=curr_change, delta=delta)   

        with_index = data["has_model_index"].sum()
        with_index_old = old_data["has_model_index"].sum()
        with_index_old_old = old_old_data["has_model_index"].sum()
        with col1:
            st.metric(label="# with model index", value=with_index, delta=int(with_index-with_index_old))
        with col2:
            curr_change, delta = change_and_delta(with_index_old_old, with_index_old, with_index)
            st.metric(label="# with model index change", value=curr_change, delta=delta)   
        with col3:
            st.metric(label="# without model index", value=rows-with_index, delta=int((rows-with_index)-(rows_old-with_index_old)))
        with col4:
            curr_change, delta = change_and_delta(rows_old_old-with_index_old_old, rows_old-with_index_old, rows-with_index)
            st.metric(label="# without model index change",  value=curr_change, delta=delta)

        with_text = data["has_text"]
        with_text_old = old_data["has_text"]
        with_text_old_old = old_old_data["has_text"]

        with_text_sum = with_text.sum()
        with_text_old_sum = with_text_old.sum()
        with_text_old_old_sum = with_text_old_old.sum()
        with col1:
            st.metric(label="# with model card text", value=with_text_sum, delta=int(with_text_sum-with_text_old_sum))
        with col2:
            curr_change, delta = change_and_delta(with_text_old_old_sum, with_text_old_sum, with_text_sum)
            st.metric(label="# with model card text change", value=curr_change, delta=delta)   
        with col3:
            st.metric(label="# without card text", value=rows-with_text_sum, delta=int((rows-with_text_sum)-(with_text_old_sum)))
        with col4:
            curr_change, delta = change_and_delta(rows_old_old-with_text_old_old_sum, rows_old-with_text_old_sum, rows-with_text_sum)
            st.metric(label="# without card text change", value=curr_change, delta=delta)   

        st.subheader("Length (chars) of model card content")
        fig, _ = plt.subplots() 
        _ = data["length_bins"].value_counts().plot.bar()
        st.metric(label="# average length of model card (chars)", value=data[with_text]["text_length"].mean())
        st.pyplot(fig)

        st.subheader("Tags (Read more in Pipeline tab)")
        tags = data["tags"].explode()
        tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
        st.write(alt.Chart(tags.head(30)).mark_bar().encode(
            x='counts',
            y=alt.X('tag', sort=None)
        ))

    with tab7:
        st.header("Authors")
        st.text("This info corresponds to the repos owned by the authors")
        authors = data.groupby("author").sum().drop(["text_length", "Unnamed: 0"], axis=1).sort_values("downloads_30d", ascending=False)
        d = data["author"].value_counts().rename_axis("author").to_frame('counts').reset_index()
        final_data = pd.merge(
            d, authors, how="outer", on="author"
        )
        st.dataframe(final_data)

    with tab8:
        st.header("Raw Data")
        d = data.astype(str)
        st.dataframe(d)


if __name__ == '__main__':
    main()