models-explorer / models.py
osanseviero's picture
Add v0
46c15e8
raw
history blame
18.3 kB
import streamlit as st
import pandas as pd
from datasets import load_dataset
from ast import literal_eval
import altair as alt
import plotly.graph_objs as go
import matplotlib.pyplot as plt
nlp_tasks = ["text-classification", "text-generation", "text2text-generation", "token-classification", "fill-mask", "question-answering",
"translation", "conversational", "sentence-similarity", "summarization", "multiple-choice", "zero-shot-classification", "table-question-answering"
]
audio_tasks = ["automatic-speech-recognition", "audio-classification", "text-to-speech", "audio-to-audio", "voice-activity-detection"]
cv_tasks = ["image-classification", "image-segmentation", "zero-shot-image-classification", "image-to-image", "unconditional-image-generation", "object-detection"]
multimodal = ["feature-extraction", "text-to-image", "visual-question-answering", "image-to-text", "document-question-answering"]
tabular = ["tabular-classification", "tabular-regression"]
modalities = {
"nlp": nlp_tasks,
"audio": audio_tasks,
"cv": cv_tasks,
"multimodal": multimodal,
"tabular": tabular,
"rl": ["reinforcement-learning"]
}
def modality(row):
pipeline = row["pipeline"]
for modality, tasks in modalities.items():
if pipeline in tasks:
return modality
if type(pipeline) == "str":
return "unk_modality"
return None
supported_revisions = ["27_09_22"]
def process_dataset(version):
# Load dataset at specified revision
dataset = load_dataset("open-source-metrics/model-repos-stats", revision=version)
# Convert to pandas dataframe
data = dataset["train"].to_pandas()
# Add modality column
data["modality"] = data.apply(modality, axis=1)
# Bin the model card length into some bins
data["length_bins"] = pd.cut(data["text_length"], [0, 200, 1000, 2000, 3000, 4000, 5000, 7500, 10000, 20000, 50000])
return data
base = st.selectbox(
'What revision do you want to use',
supported_revisions)
data = process_dataset(base)
def eval_tags(row):
tags = row["tags"]
if tags == "none" or tags == [] or tags == "{}":
return []
if tags[0] != "[":
tags = str([tags])
val = literal_eval(tags)
if isinstance(val, dict):
return []
return val
data["tags"] = data.apply(eval_tags, axis=1)
total_samples = data.shape[0]
st.metric(label="Total models", value=total_samples)
tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8 = st.tabs(["Language", "License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super users", "Raw Data"])
with tab1:
st.header("Languages info")
data.loc[data.languages == "False", 'languages'] = None
data.loc[data.languages == {}, 'languages'] = None
no_lang_count = data["languages"].isna().sum()
data["languages"] = data["languages"].fillna('none')
def make_list(row):
languages = row["languages"]
if languages == "none":
return []
return literal_eval(languages)
def language_count(row):
languages = row["languages"]
leng = len(languages)
return leng
data["languages"] = data.apply(make_list, axis=1)
data["language_count"] = data.apply(language_count, axis=1)
models_with_langs = data[data["language_count"] > 0]
langs = models_with_langs["languages"].explode()
langs = langs[langs != {}]
total_langs = len(langs.unique())
col1, col2, col3 = st.columns(3)
with col1:
st.metric(label="Language Specified", value=total_samples-no_lang_count)
with col2:
st.metric(label="No Language Specified", value=no_lang_count)
with col3:
st.metric(label="Total Unique Languages", value=total_langs)
st.subheader("Count of languages per model repo")
st.text("Some repos are for multiple languages, so the count is greater than 1")
linguality = st.selectbox(
'All or just Multilingual',
["All", "Just Multilingual", "Three or more languages"])
filter = 0
if linguality == "Just Multilingual":
filter = 1
elif linguality == "Three or more languages":
filter = 2
models_with_langs = data[data["language_count"] > filter]
df1 = models_with_langs['language_count'].value_counts()
st.bar_chart(df1)
st.subheader("Most frequent languages")
linguality_2 = st.selectbox(
'All or filtered',
["All", "No English", "Remove top 10"])
filter = 0
if linguality_2 == "All":
filter = 0
elif linguality_2 == "No English":
filter = 1
else:
filter = 2
models_with_langs = data[data["language_count"] > 0]
langs = models_with_langs["languages"].explode()
langs = langs[langs != {}]
d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index()
if filter == 1:
d = d.iloc[1:]
elif filter == 2:
d = d.iloc[10:]
# Just keep top 25 to avoid vertical scroll
d = d.iloc[:25]
st.write(alt.Chart(d).mark_bar().encode(
x='counts',
y=alt.X('language', sort=None)
))
st.subheader("Raw Data")
col1, col2 = st.columns(2)
with col1:
st.dataframe(df1)
with col2:
d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index()
st.dataframe(d)
with tab2:
st.header("License info")
no_license_count = data["license"].isna().sum()
col1, col2, col3 = st.columns(3)
with col1:
st.metric(label="License Specified", value=total_samples-no_license_count)
with col2:
st.metric(label="No license Specified", value=no_license_count)
with col3:
st.metric(label="Total Unique Licenses", value=len(data["license"].unique()))
st.subheader("Distribution of licenses per model repo")
license_filter = st.selectbox(
'All or filtered',
["All", "No Apache 2.0", "Remove top 10"])
filter = 0
if license_filter == "All":
filter = 0
elif license_filter == "No Apache 2.0":
filter = 1
else:
filter = 2
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index()
if filter == 1:
d = d.iloc[1:]
elif filter == 2:
d = d.iloc[10:]
# Just keep top 25 to avoid vertical scroll
d = d.iloc[:25]
st.write(alt.Chart(d).mark_bar().encode(
x='counts',
y=alt.X('license', sort=None)
))
st.text("There are some edge cases, as old repos using lists of licenses.")
st.subheader("Raw Data")
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index()
st.dataframe(d)
with tab3:
st.header("Pipeline info")
tags = data["tags"].explode()
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
s = tags["tag"]
s = s[s.apply(type) == str]
unique_tags = len(s.unique())
no_pipeline_count = data["pipeline"].isna().sum()
col1, col2, col3 = st.columns(3)
with col1:
st.metric(label="# models that have any pipeline", value=total_samples-no_pipeline_count)
with col2:
st.metric(label="No pipeline Specified", value=no_pipeline_count)
with col3:
st.metric(label="Total Unique Pipelines", value=len(data["pipeline"].unique()))
pipeline_filter = st.selectbox(
'Modalities',
["All", "NLP", "CV", "Audio", "RL", "Multimodal", "Tabular"])
filter = 0
if pipeline_filter == "All":
filter = 0
elif pipeline_filter == "NLP":
filter = 1
elif pipeline_filter == "CV":
filter = 2
elif pipeline_filter == "Audio":
filter = 3
elif pipeline_filter == "RL":
filter = 4
elif pipeline_filter == "Multimodal":
filter = 5
elif pipeline_filter == "Tabular":
filter = 6
st.subheader("High-level metrics")
filtered_data = data[data['pipeline'].notna()]
if filter == 1:
filtered_data = data[data["modality"] == "nlp"]
elif filter == 2:
filtered_data = data[data["modality"] == "cv"]
elif filter == 3:
filtered_data = data[data["modality"] == "audio"]
elif filter == 4:
filtered_data = data[data["modality"] == "rl"]
elif filter == 5:
filtered_data = data[data["modality"] == "multimodal"]
elif filter == 6:
filtered_data = data[data["modality"] == "tabular"]
col1, col2, col3 = st.columns(3)
with col1:
p = st.selectbox(
'What pipeline do you want to see?',
["all", *filtered_data["pipeline"].unique()]
)
with col2:
l = st.selectbox(
'What library do you want to see?',
["all", *filtered_data["library"].unique()]
)
with col3:
f = st.selectbox(
'What framework support? (transformers)',
["all", "py", "tf", "jax"]
)
col1, col2 = st.columns(2)
with col1:
filt = st.multiselect(
label="Tags (All by default)",
options=s.unique(),
default=None)
with col2:
o = st.selectbox(
label="Operation (for tags)",
options=["Any", "All", "None"]
)
def filter_fn(row):
tags = row["tags"]
tags[:] = [d for d in tags if isinstance(d, str)]
if o == "All":
if all(elem in tags for elem in filt):
return True
s1 = set(tags)
s2 = set(filt)
if o == "Any":
if bool(s1 & s2):
return True
if o == "None":
if len(s1.intersection(s2)) == 0:
return True
return False
if p != "all":
filtered_data = filtered_data[filtered_data["pipeline"] == p]
if l != "all":
filtered_data = filtered_data[filtered_data["library"] == l]
if f != "all":
if f == "py":
filtered_data = filtered_data[filtered_data["pytorch"] == 1]
elif f == "tf":
filtered_data = filtered_data[filtered_data["tensorflow"] == 1]
elif f == "jax":
filtered_data = filtered_data[filtered_data["jax"] == 1]
if filt != []:
filtered_data = filtered_data[filtered_data.apply(filter_fn, axis=1)]
d = filtered_data["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index()
columns_of_interest = ["downloads_30d", "likes", "pytorch", "tensorflow", "jax"]
grouped_data = filtered_data.groupby("pipeline").sum()[columns_of_interest]
final_data = pd.merge(
d, grouped_data, how="outer", on="pipeline"
)
sums = grouped_data.sum()
col1, col2, col3 = st.columns(3)
with col1:
st.metric(label="Total models", value=filtered_data.shape[0])
with col2:
st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"])
with col3:
st.metric(label="Cumulative likes", value=sums["likes"])
col1, col2, col3 = st.columns(3)
with col1:
st.metric(label="Total in PT", value=sums["pytorch"])
with col2:
st.metric(label="Total in TF", value=sums["tensorflow"])
with col3:
st.metric(label="Total in JAX", value=sums["jax"])
st.metric(label="Unique Tags", value=unique_tags)
st.subheader("Count of models per pipeline")
st.write(alt.Chart(d).mark_bar().encode(
x='counts',
y=alt.X('pipeline', sort=None)
))
st.subheader("Aggregated data")
st.dataframe(final_data)
st.subheader("Most common model types (specific to transformers")
d = filtered_data["model_type"].value_counts().rename_axis("model_type").to_frame('counts').reset_index()
d = d.iloc[:15]
st.write(alt.Chart(d).mark_bar().encode(
x='counts',
y=alt.X('model_type', sort=None)
))
st.subheader("Most common library types (Learn more in library tab)")
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15)
st.write(alt.Chart(d).mark_bar().encode(
x='counts',
y=alt.X('library', sort=None)
))
st.subheader("Tags by count")
tags = filtered_data["tags"].explode()
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
st.write(alt.Chart(tags.head(30)).mark_bar().encode(
x='counts',
y=alt.X('tag', sort=None)
))
st.subheader("Raw Data")
columns_of_interest = [
"repo_id", "author", "model_type", "files_per_repo", "library",
"downloads_30d", "likes", "pytorch", "tensorflow", "jax"]
raw_data = filtered_data[columns_of_interest]
st.dataframe(raw_data)
# todo : add activity metric
with tab4:
st.header("Discussions Tab info")
columns_of_interest = ["prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"]
sums = data[columns_of_interest].sum()
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric(label="Total PRs", value=sums["prs_count"])
with col2:
st.metric(label="PRs opened", value=sums["prs_open"])
with col3:
st.metric(label="PRs merged", value=sums["prs_merged"])
with col4:
st.metric(label="PRs closed", value=sums["prs_closed"])
col1, col2, col3 = st.columns(3)
with col1:
st.metric(label="Total discussions", value=sums["discussions_count"])
with col2:
st.metric(label="Discussions open", value=sums["discussions_open"])
with col3:
st.metric(label="Discussions closed", value=sums["discussions_closed"])
filtered_data = data[["repo_id", "prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"]].sort_values("prs_count", ascending=False).reset_index(drop=True)
st.dataframe(filtered_data)
with tab5:
st.header("Library info")
no_library_count = data["library"].isna().sum()
col1, col2, col3 = st.columns(3)
with col1:
st.metric(label="# models that have any library", value=total_samples-no_library_count)
with col2:
st.metric(label="No library Specified", value=no_library_count)
with col3:
st.metric(label="Total Unique library", value=len(data["library"].unique()))
st.subheader("High-level metrics")
filtered_data = data[data['library'].notna()]
col1, col2 = st.columns(2)
with col1:
lib = st.selectbox(
'What library do you want to see? ',
["all", *filtered_data["library"].unique()]
)
with col2:
pip = st.selectbox(
'What pipeline do you want to see? ',
["all", *filtered_data["pipeline"].unique()]
)
if pip != "all":
filtered_data = filtered_data[filtered_data["pipeline"] == pip]
if lib != "all":
filtered_data = filtered_data[filtered_data["library"] == lib]
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index()
grouped_data = filtered_data.groupby("library").sum()[["downloads_30d", "likes"]]
final_data = pd.merge(
d, grouped_data, how="outer", on="library"
)
sums = grouped_data.sum()
col1, col2, col3 = st.columns(3)
with col1:
st.metric(label="Total models", value=filtered_data.shape[0])
with col2:
st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"])
with col3:
st.metric(label="Cumulative likes", value=sums["likes"])
st.subheader("Most common library types (Learn more in library tab)")
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15)
st.write(alt.Chart(d).mark_bar().encode(
x='counts',
y=alt.X('library', sort=None)
))
st.subheader("Aggregated Data")
st.dataframe(final_data)
st.subheader("Raw Data")
columns_of_interest = ["repo_id", "author", "files_per_repo", "library", "downloads_30d", "likes"]
filtered_data = filtered_data[columns_of_interest]
st.dataframe(filtered_data)
with tab6:
st.header("Model cards")
columns_of_interest = ["has_model_index", "has_metadata", "has_text", "text_length"]
rows = data.shape[0]
cond = data["has_model_index"] | data["has_text"]
with_model_card = data[cond]
c_model_card = with_model_card.shape[0]
st.subheader("High-level metrics")
col1, col2, col3 = st.columns(3)
with col1:
st.metric(label="# models with model card file", value=c_model_card)
with col2:
st.metric(label="# models without model card file", value=rows-c_model_card)
with_index = data["has_model_index"].sum()
with col1:
st.metric(label="# models with model index", value=with_index)
with col2:
st.metric(label="# models without model index", value=rows-with_index)
with_text = data["has_text"]
with col1:
st.metric(label="# models with model card text", value=with_text.sum())
with col2:
st.metric(label="# models without model card text", value=rows-with_text.sum())
st.subheader("Length (chars) of model card content")
fig, ax = plt.subplots()
ax = data["length_bins"].value_counts().plot.bar()
st.metric(label="# average length of model card (chars)", value=data[with_text]["text_length"].mean())
st.pyplot(fig)
st.subheader("Tags (Read more in Pipeline tab)")
tags = data["tags"].explode()
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
st.write(alt.Chart(tags.head(30)).mark_bar().encode(
x='counts',
y=alt.X('tag', sort=None)
))
with tab7:
st.header("Authors")
st.text("This info corresponds to the repos owned by the authors")
authors = data.groupby("author").sum().drop(["text_length", "Unnamed: 0", "language_count"], axis=1).sort_values("downloads_30d", ascending=False)
d = data["author"].value_counts().rename_axis("author").to_frame('counts').reset_index()
final_data = pd.merge(
d, authors, how="outer", on="author"
)
st.dataframe(final_data)
with tab8:
st.header("Raw Data")
d = data.astype(str)
st.dataframe(d)