import gradio as gr import core as core from style import CSS, T_SYMBOLS, TITLE demo = gr.Blocks(css=CSS) with demo: gr.HTML(TITLE) gr.Markdown( "This is a (WIP) collection of multilingual evaluation results obtained using our fork of the LM-evaluation-harness (https://github.com/OpenGPTX/lm-evaluation-harness), based on https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard.\ Note that currently, not all benchmarks are available in all languages, results are averaged over those languages under the selected ones for which the benchmark is available.", elem_classes="markdown-text", ) with gr.Column(): with gr.Row(): with gr.Column(): with gr.Row(): search_bar = gr.Textbox( label="Search models", placeholder=" 🔍 Separate multiple queries with ';' and press ENTER...", show_label=True, elem_id="search-bar", ) model_types = gr.CheckboxGroup( label="Select model type", choices=[ ( f"Pretrained {T_SYMBOLS['pretrained']}", T_SYMBOLS["pretrained"], ), (f"Chat {T_SYMBOLS['chat']}", T_SYMBOLS["chat"]), ], value=list(T_SYMBOLS.values()), ) with gr.Row(): langs_bar = gr.CheckboxGroup( choices=core.languages_list, value=core.languages_list, label="Select languages to average over", elem_id="column-select", interactive=True, scale=6, ) with gr.Column(scale=1): clear = gr.ClearButton( langs_bar, value="Deselect all languages", size="sm", scale=1, ) select = gr.Button( value="Select all languages", size="sm", scale=1 ) def update_bar(): langs_bar = gr.CheckboxGroup( choices=core.languages_list, value=core.languages_list, label="Select languages to average over", elem_id="column-select", interactive=True, ) return langs_bar select.click(update_bar, inputs=[], outputs=langs_bar) with gr.Row(): acc_task_group_names = core.task_groups_with_task_type("accuracy") shown_tasks = gr.CheckboxGroup( choices=acc_task_group_names, value=acc_task_group_names, label="Select tasks to show", elem_id="column-select", interactive=True, scale=50, ) fewshot = gr.Radio( choices=[("0-Shot", False), ("Few-shot", True)], value=True, label="Select evaluation type", interactive=True, scale=29, ) fewshot.change( core.fix_zeroshot, [shown_tasks, fewshot], shown_tasks ) clear = gr.ClearButton( shown_tasks, value="Deselect all tasks", size="sm", scale=21 ) with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem( "🏅 LLM accuracy benchmark", elem_id="llm-benchmark-tab-table-acc", id=0 ) as acc: leaderboard_table = gr.Dataframe() with gr.TabItem( "🌐 LLM translation benchmark", elem_id="llm-benchmark-tab-table-misc", id=1, ) as misc: leaderboard_table_misc = gr.Dataframe() with gr.TabItem("Plots", elem_id="llm-plot-tab", id=2) as plot: leaderboard_plot = gr.Plot(elem_id="plot") acc.select( lambda x: core.update_tab_tasks(0, x), inputs=fewshot, outputs=[shown_tasks, fewshot], ) misc.select( lambda x: core.update_tab_tasks(1, x), inputs=fewshot, outputs=[shown_tasks, fewshot], ) for comp, fn in [ (search_bar, "submit"), (langs_bar, "change"), (shown_tasks, "change"), (fewshot, "change"), (model_types, "change"), ]: getattr(comp, fn)( core.update_df, [shown_tasks, search_bar, langs_bar, model_types, fewshot], leaderboard_table, ) getattr(comp, fn)( core.update_df, [shown_tasks, search_bar, langs_bar, model_types, fewshot], leaderboard_table_misc, ) getattr(comp, fn)( core.update_plot, [shown_tasks, search_bar, langs_bar, model_types, fewshot], leaderboard_plot, ) gr.Blocks.load( block=demo, fn=core.update_df, inputs=[shown_tasks, search_bar, langs_bar, model_types, fewshot], outputs=leaderboard_table, ) gr.Blocks.load( block=demo, fn=core.update_df, inputs=[shown_tasks, search_bar, langs_bar, model_types, fewshot], outputs=leaderboard_table_misc, ) gr.Blocks.load( block=demo, fn=core.update_plot, inputs=[shown_tasks, search_bar, langs_bar, model_types, fewshot], outputs=leaderboard_plot, ) demo.launch()