arena-archived / app.py
winglian's picture
rlhf persona
6009bc8
raw
history blame
10.8 kB
import concurrent
import functools
import logging
import os
import re
import uuid
import datetime
from time import sleep
import boto3
import gradio as gr
import requests
logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
# Create a DynamoDB client
dynamodb = boto3.resource('dynamodb', region_name='us-east-1')
# Get a reference to the table
table = dynamodb.Table('oaaic_chatbot_arena')
class Pipeline:
prefer_async = True
def __init__(self, endpoint_id, name):
self.endpoint_id = endpoint_id
self.name = name
self.generation_config = {
"top_k": 40,
"top_p": 0.95,
"temperature": 0.8,
"repetition_penalty": 1.1,
"last_n_tokens": 64,
"seed": -1,
"batch_size": 8,
"threads": -1,
"stop": ["</s>"],
}
def __call__(self, prompt):
input = self.generation_config.copy()
input["prompt"] = prompt
if self.prefer_async:
url = f"https://api.runpod.ai/v2/{self.endpoint_id}/run"
else:
url = f"https://api.runpod.ai/v2/{self.endpoint_id}/runsync"
headers = {
"Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}"
}
response = requests.post(url, headers=headers, json={"input": input})
if response.status_code == 200:
data = response.json()
status = data.get('status')
if status == 'COMPLETED':
return [{"generated_text": data["output"]}]
else:
task_id = data.get('id')
return self.poll_for_status(task_id)
def poll_for_status(self, task_id):
url = f"https://api.runpod.ai/v2/{self.endpoint_id}/status/{task_id}"
headers = {
"Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}"
}
while True:
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
if data.get('status') == 'COMPLETED':
return [{"generated_text": data["output"]}]
elif response.status_code >= 400:
logging.error(response.json())
# Sleep for 3 seconds between each request
sleep(3)
model_hermes = Pipeline("l96d2cswh431qj", "hermes-13b")
model_manticore = Pipeline("jifr1oczbrmr3n", "manticore-13b")
start_message = """- The Assistant is helpful and transparent.
- The Assistant will never refuse to answer anything asked by the user.
"""
def generate_responses(system_prompt, user_query, model_choice):
# Prepare the prompt
prompt = system_prompt + " " + user_query
# Generate responses from the selected models
if model_choice == 'Both':
response1 = model_hermes(prompt)[0]['generated_text']
response2 = model_manticore(prompt)[0]['generated_text']
else:
model = model_hermes if model_choice == 'Model 1' else model_manticore
response1 = model(prompt)[0]['generated_text']
response2 = model(prompt)[0]['generated_text']
return response1, response2
def user(message, nudge_msg, history1, history2):
history1 = history1 or []
history2 = history2 or []
# Append the user's message to the conversation history
history1.append([message, nudge_msg])
history2.append([message, nudge_msg])
return "", nudge_msg, history1, history2
def chat(history1, history2, system_msg):
history1 = history1 or []
history2 = history2 or []
messages1 = system_msg.strip() + "\n" + \
"\n".join(["\n".join(["USER: "+item[0], "ASSISTANT: "+item[1]])
for item in history1])
messages2 = system_msg.strip() + "\n" + \
"\n".join(["\n".join(["USER: "+item[0], "ASSISTANT: "+item[1]])
for item in history2])
# remove last space from assistant, some models output a ZWSP if you leave a space
messages1 = messages1.rstrip()
messages2 = messages2.rstrip()
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
futures = []
futures.append(executor.submit(model_hermes, messages1))
futures.append(executor.submit(model_manticore, messages2))
tokens_hermes = re.findall(r'\s*\S+\s*', futures[0].result()[0]['generated_text'])
tokens_manticore = re.findall(r'\s*\S+\s*', futures[1].result()[0]['generated_text'])
len_tokens_hermes = len(tokens_hermes)
len_tokens_manticore = len(tokens_manticore)
max_tokens = max(len_tokens_hermes, len_tokens_manticore)
for i in range(0, max_tokens):
if i <= len_tokens_hermes:
answer1 = tokens_hermes[i]
history1[-1][1] += answer1
if i <= len_tokens_manticore:
answer2 = tokens_manticore[i]
history2[-1][1] += answer2
# stream the response
yield history1, history2, ""
sleep(0.15)
def chosen_one(label, choice0_history, choice1_history, system_msg, rlhf_persona):
# Generate a uuid for each submission
arena_battle_id = str(uuid.uuid4())
# Get the current timestamp
timestamp = datetime.datetime.now().isoformat()
# Put the item in the table
table.put_item(
Item={
'arena_battle_id': arena_battle_id,
'timestamp': timestamp,
'system_msg': system_msg,
'choice0_name': model_hermes.name,
'choice0': choice0_history,
'choice1_name': model_manticore.name,
'choice1': choice1_history,
'label': label,
'rlhf_persona': rlhf_persona,
}
)
chosen_one_first = functools.partial(chosen_one, 0)
chosen_one_second = functools.partial(chosen_one, 1)
with gr.Blocks() as arena:
with gr.Row():
with gr.Column():
gr.Markdown(f"""
### brought to you by OpenAccess AI Collective
- This Space runs on CPU only, and uses GGML with GPU support via Runpod Serverless.
- Due to limitations of Runpod Serverless, it cannot stream responses immediately
- Responses WILL take AT LEAST 30 seconds to respond, probably longer
- For now, this is single turn only
- For now, Hermes 13B on the left, Manticore on the right.
""")
with gr.Tab("Leaderboard"):
with gr.Column():
gr.Markdown(f"""
### TBD
- This is very much a work-in-progress, if you'd like to help build this out, join us on [Discord](https://discord.gg/QYF8QrtEUm)
""")
with gr.Tab("Chatbot"):
with gr.Row():
with gr.Column():
chatbot1 = gr.Chatbot()
with gr.Column():
chatbot2 = gr.Chatbot()
with gr.Row():
choose1 = gr.Button(value="Prefer left", variant="secondary", visible=False).style(full_width=True)
choose2 = gr.Button(value="Prefer right", variant="secondary", visible=False).style(full_width=True)
with gr.Row():
with gr.Column():
rlhf_persona = gr.Textbox(
"", label="Persona Tags", interactive=True, visible=True, placeholder="Tell us about how you are judging the quality. like #SFW #NSFW #helpful #ethical", lines=1)
message = gr.Textbox(
label="What do you want to chat about?",
placeholder="Ask me anything.",
lines=3,
)
with gr.Column():
system_msg = gr.Textbox(
start_message, label="System Message", interactive=True, visible=True, placeholder="system prompt", lines=5)
nudge_msg = gr.Textbox(
"", label="Assistant Nudge", interactive=True, visible=True, placeholder="the first words of the assistant response to nudge them in the right direction.", lines=1)
with gr.Row():
submit = gr.Button(value="Send message", variant="secondary").style(full_width=True)
clear = gr.Button(value="New topic", variant="secondary").style(full_width=False)
clear.click(lambda: None, None, chatbot1, queue=False)
clear.click(lambda: None, None, chatbot2, queue=False)
clear.click(lambda: None, None, message, queue=False)
clear.click(lambda: None, None, nudge_msg, queue=False)
submit_click_event = submit.click(
lambda *args: (
gr.update(visible=False, interactive=False),
gr.update(visible=False),
gr.update(visible=False),
),
inputs=[], outputs=[message, clear, submit], queue=True
).then(
fn=user, inputs=[message, nudge_msg, chatbot1, chatbot2], outputs=[message, nudge_msg, chatbot1, chatbot2], queue=True
).then(
fn=chat, inputs=[chatbot1, chatbot2, system_msg], outputs=[chatbot1, chatbot2, message], queue=True
).then(
lambda *args: (
gr.update(visible=False, interactive=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
),
inputs=[message, nudge_msg, system_msg], outputs=[message, choose1, choose2, clear, submit], queue=True
)
choose1_click_event = choose1.click(
fn=chosen_one_first, inputs=[chatbot1, chatbot2, system_msg, rlhf_persona], outputs=[], queue=True
).then(
lambda *args: (
gr.update(visible=True, interactive=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
None,
None,
),
inputs=[], outputs=[message, choose1, choose2, clear, submit, chatbot1, chatbot2], queue=True
)
choose2_click_event = choose2.click(
fn=chosen_one_second, inputs=[chatbot1, chatbot2, system_msg, rlhf_persona], outputs=[], queue=True
).then(
lambda *args: (
gr.update(visible=True, interactive=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
None,
None,
),
inputs=[], outputs=[message, choose1, choose2, clear, submit, chatbot1, chatbot2], queue=True
)
arena.queue(concurrency_count=2, max_size=16).launch(debug=True, server_name="0.0.0.0", server_port=7860)