Spaces:
Build error
Build error
File size: 6,395 Bytes
ec779d5 a6bc28e dc8c932 ec779d5 dc8c932 ec779d5 dfe6be1 ec779d5 3a335b7 ec779d5 e0bf185 ec779d5 e0bf185 fd55e6d e0bf185 ec779d5 dce6894 ec779d5 80c7d2e a6bc28e 80c7d2e 44a2c68 80c7d2e ec779d5 dce6894 ec779d5 dc8c932 ec779d5 dc8c932 ec779d5 dc8c932 ec779d5 54d2e53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import gradio as gr
import yaml
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import LocalEntryNotFoundError
from llama_cpp import Llama
with open("./config.yml", "r") as f:
config = yaml.load(f, Loader=yaml.Loader)
while True:
try:
load_config = config.copy()
hub_config = load_config["hub"].copy()
repo_id = hub_config.pop("repo_id")
filename = hub_config.pop("filename")
fp = hf_hub_download(
repo_id=repo_id, filename=filename, **hub_config
)
break
except LocalEntryNotFoundError as e:
if "Connection error" in str(e):
print(str(e) + ", retrying...")
else:
raise(e)
llm = Llama(model_path=fp, **config["llama_cpp"])
def user(message, history):
history = history or []
# Append the user's message to the conversation history
history.append([message, ""])
return "", history
def chat(history, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
history = history or []
messages = system_message + \
"\n".join(["\n".join(["USER: "+item[0], "ASSISTANT: "+item[1]])
for item in history])
# remove last space from assistant, some models output a ZWSP if you leave a space
messages = messages[:-1]
history[-1][1] = ""
for output in llm(
messages,
echo=False,
stream=True,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repeat_penalty=repeat_penalty,
**config['chat']
):
answer = output['choices'][0]['text']
history[-1][1] += answer
# stream the response
yield history, history
def clear_chat(chat_history_state, chat_message):
chat_history_state = []
chat_message = ''
return chat_history_state, chat_message
start_message = """
- The Assistant is helpful and transparent.
- The Assistant will never refuse to answer anything asked by the user.
"""
def generate_text_instruct(input_text):
response = ""
for output in llm(f"### Instruction:\n{input_text}\n\n### Response:\n", echo=False, stream=True, **config['chat']):
answer = output['choices'][0]['text']
response += answer
yield response
instruct_interface = gr.Interface(
fn=generate_text_instruct,
inputs=gr.inputs.Textbox(lines= 10, label="Enter your input text"),
outputs=gr.outputs.Textbox(label="Output text"),
)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown(f"""
### brought to you by OpenAccess AI Collective
- This is the [{config["hub"]["repo_id"]}](https://huggingface.co/{config["hub"]["repo_id"]}) model file [{config["hub"]["filename"]}](https://huggingface.co/{config["hub"]["repo_id"]}/blob/main/{config["hub"]["filename"]})
- This Space uses GGML with GPU support, so it can quickly run larger models on smaller GPUs & VRAM.
- This is running on a smaller, shared GPU, so it may take a few seconds to respond.
- [Duplicate the Space](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui?duplicate=true) to skip the queue and run in a private space or to use your own GGML models.
- When using your own models, simply update the [config.yml](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui/blob/main/config.yml)
- Contribute at [https://github.com/OpenAccess-AI-Collective/ggml-webui](https://github.com/OpenAccess-AI-Collective/ggml-webui)
- Many thanks to [TheBloke](https://huggingface.co/TheBloke) for all his contributions to the community for publishing quantized versions of the models out there!
""")
with gr.Tab("Instruct"):
gr.Markdown("# GGML Spaces Instruct Demo")
instruct_interface.render()
with gr.Tab("Chatbot"):
gr.Markdown("# GGML Spaces Chatbot Demo")
chatbot = gr.Chatbot()
with gr.Row():
message = gr.Textbox(
label="What do you want to chat about?",
placeholder="Ask me anything.",
lines=1,
)
with gr.Row():
submit = gr.Button(value="Send message", variant="secondary").style(full_width=True)
clear = gr.Button(value="New topic", variant="secondary").style(full_width=False)
stop = gr.Button(value="Stop", variant="secondary").style(full_width=False)
with gr.Row():
with gr.Column():
max_tokens = gr.Slider(20, 1000, label="Max Tokens", step=20, value=300)
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=0.8)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95)
top_k = gr.Slider(0, 100, label="Top K", step=1, value=40)
repeat_penalty = gr.Slider(0.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1)
system_msg = gr.Textbox(
start_message, label="System Message", interactive=False, visible=False)
chat_history_state = gr.State()
clear.click(clear_chat, inputs=[chat_history_state, message], outputs=[chat_history_state, message], queue=False)
clear.click(lambda: None, None, chatbot, queue=False)
submit_click_event = submit.click(
fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=True
).then(
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state], queue=True
)
message_submit_event = message.submit(
fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=True
).then(
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state], queue=True
)
stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_click_event, message_submit_event], queue=False)
demo.queue(**config["queue"]).launch(debug=True, server_name="0.0.0.0", server_port=7860)
|