Spaces:
Runtime error
Runtime error
File size: 26,790 Bytes
e81fd5d 2efc192 e81fd5d e49e33e e81fd5d 93cc712 2efc192 b360328 e49e33e e81fd5d c4c5fc5 e81fd5d 2efc192 e81fd5d 2c41f4b e81fd5d 5e9beb7 e81fd5d 2efc192 403f43d d72a1e0 403f43d c4c5fc5 e81fd5d d353b2f e81fd5d 403f43d d353b2f e81fd5d 6398310 e81fd5d f111d2b e81fd5d d353b2f e81fd5d c4c5fc5 e81fd5d b360328 c4c5fc5 b360328 75c6c13 e81fd5d 403f43d e81fd5d e49e33e 403f43d d3e686c 2c66a20 d353b2f 403f43d ea2621e 71bdf44 c968b83 2fc792a 1f9f9d5 d72a1e0 01c7138 e49e33e 649e7ae 01c7138 71bdf44 faf07e0 649e7ae c4c5fc5 e78cc58 649e7ae 71bdf44 01c7138 649e7ae c4c5fc5 e49e33e d353b2f c4c5fc5 e49e33e e81fd5d 0f0c4f0 e81fd5d b360328 792c165 b360328 792c165 b360328 c4c5fc5 e81fd5d c4c5fc5 1fb15cc 01c7138 c4c5fc5 403f43d e81fd5d b360328 56e046b b360328 e81fd5d c4c5fc5 c968b83 e81fd5d 1cf9bbe 56e046b 2efc192 2213167 1cf9bbe 2efc192 1cf9bbe 6009bc8 2efc192 e81fd5d 1cf9bbe e81fd5d 96772fe 14031c6 96772fe 14031c6 c4c5fc5 877b0e4 c4c5fc5 81fdcb3 d0d2db4 f605ae7 d0d2db4 f605ae7 c4c5fc5 877b0e4 02bf4e7 81fdcb3 f605ae7 02bf4e7 f605ae7 877b0e4 c4c5fc5 e81fd5d fd00027 e81fd5d d3e686c eacd70b 8facb9e eacd70b b39d980 3dd20d6 ea2621e e81fd5d ea2621e e81fd5d ea2621e e81fd5d ea2621e 1cf9bbe 8e1ed27 e49e33e e81fd5d ea2621e e49e33e e81fd5d ea2621e 403f43d ea2621e 4a2d9ba e81fd5d ea2621e 07615cb e81fd5d ea2621e c4c5fc5 5e9beb7 ea2621e c4c5fc5 ea2621e c4c5fc5 ea2621e 5e9beb7 ea2621e 5e9beb7 ea2621e 5e9beb7 ea2621e 5e9beb7 ea2621e c4c5fc5 ea2621e c4c5fc5 ea2621e 7606298 96772fe 14031c6 ea2621e c4c5fc5 75c6c13 c4c5fc5 e81fd5d 5503800 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
import concurrent
import functools
import logging
import os
import random
import re
import traceback
import uuid
import datetime
from collections import deque
import itertools
from collections import defaultdict
from time import sleep
from typing import Generator, Tuple, List, Dict
import boto3
import gradio as gr
import requests
from datasets import load_dataset
logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
logging.getLogger("httpx").setLevel(logging.WARNING)
# Create a DynamoDB client
dynamodb = boto3.resource('dynamodb', region_name='us-east-1')
# Get a reference to the table
table = dynamodb.Table('oaaic_chatbot_arena')
def prompt_human_instruct(system_msg, history):
return system_msg.strip() + "\n" + \
"\n".join(["\n".join(["###Human: "+item[0], "###Assistant: "+item[1]])
for item in history])
def prompt_instruct(system_msg, history):
return system_msg.strip() + "\n" + \
"\n".join(["\n".join(["### Instruction: "+item[0], "### Response: "+item[1]])
for item in history])
def prompt_chat(system_msg, history):
return system_msg.strip() + "\n" + \
"\n".join(["\n".join(["USER: "+item[0], "ASSISTANT: "+item[1]])
for item in history])
def prompt_roleplay(system_msg, history):
return "<|system|>" + system_msg.strip() + "\n" + \
"\n".join(["\n".join(["<|user|>"+item[0], "<|model|>"+item[1]])
for item in history])
class Pipeline:
prefer_async = True
def __init__(self, endpoint_id, name, prompt_fn, stop_tokens=None):
self.endpoint_id = endpoint_id
self.name = name
self.prompt_fn = prompt_fn
stop_tokens = stop_tokens or []
self.generation_config = {
"max_new_tokens": 1024,
"top_k": 40,
"top_p": 0.90,
"temperature": 0.72,
"repetition_penalty": 1.22,
"last_n_tokens": 64,
"seed": -1,
"batch_size": 8,
"threads": -1,
"stop": ["</s>", "USER:", "### Instruction:"] + stop_tokens,
}
def get_generation_config(self):
return self.generation_config.copy()
def __call__(self, prompt, config=None) -> Generator[List[Dict[str, str]], None, None]:
input = config if config else self.generation_config.copy()
input["prompt"] = prompt
if self.prefer_async:
url = f"https://api.runpod.ai/v2/{self.endpoint_id}/run"
else:
url = f"https://api.runpod.ai/v2/{self.endpoint_id}/runsync"
headers = {
"Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}"
}
response = requests.post(url, headers=headers, json={"input": input})
if response.status_code == 200:
data = response.json()
task_id = data.get('id')
return self.stream_output(task_id)
def stream_output(self,task_id) -> Generator[List[Dict[str, str]], None, None]:
url = f"https://api.runpod.ai/v2/{self.endpoint_id}/stream/{task_id}"
headers = {
"Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}"
}
while True:
try:
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
yield [{"generated_text": "".join([s["output"] for s in data["stream"]])}]
if data.get('status') == 'COMPLETED':
return
elif response.status_code >= 400:
logging.error(response.json())
except ConnectionError:
pass
def poll_for_status(self, task_id):
url = f"https://api.runpod.ai/v2/{self.endpoint_id}/status/{task_id}"
headers = {
"Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}"
}
while True:
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
if data.get('status') == 'COMPLETED':
return [{"generated_text": data["output"]}]
elif response.status_code >= 400:
logging.error(response.json())
# Sleep for 3 seconds between each request
sleep(3)
def transform_prompt(self, system_msg, history):
return self.prompt_fn(system_msg, history)
AVAILABLE_MODELS = {
"hermes-13b": ("p0zqb2gkcwp0ww", prompt_instruct),
"manticore-13b-chat": ("u6tv84bpomhfei", prompt_chat),
"airoboros-13b": ("rglzxnk80660ja", prompt_chat),
"wizard-vicuna-13b": ("9vvpikt4ttyqos", prompt_chat),
"lmsys-vicuna-13b": ("2nlb32ydkaz6yd", prompt_chat),
"supercot-13b": ("0be7865dwxpwqk", prompt_instruct, ["Instruction:"]),
"mpt-7b-instruct": ("jpqbvnyluj18b0", prompt_instruct),
"guanaco-13b": ("yxl8w98z017mw2", prompt_instruct),
# "minotaur-13b": ("6f1baphxjpjk7b", prompt_chat),
"minotaur-13b-fixed": ("sjnkstd3e40ojj", prompt_roleplay),
"wizardlm-13b": ("k0chcxsgukov8x", prompt_instruct),
"selfee-13b": ("50rnvxln9bmf4c", prompt_instruct),
"robin-v2-13b": ("4cw4vwzzhsl5pq", prompt_human_instruct, ["###Human"]),
"minotaur-15b-8k": ("zdk804d2txtt68", prompt_chat),
}
OAAIC_MODELS = [
"minotaur-15b-8k",
"minotaur-13b-fixed",
"manticore-13b-chat",
# "minotaur-mpt-7b",
]
OAAIC_MODELS_ROLEPLAY = {
"manticore-13b-chat-roleplay": ("u6tv84bpomhfei", prompt_roleplay),
"minotaur-13b-roleplay": ("6f1baphxjpjk7b", prompt_roleplay),
"minotaur-13b-fixed-roleplay": ("sjnkstd3e40ojj", prompt_roleplay),
"minotaur-15b-8k-roleplay": ("zdk804d2txtt68", prompt_roleplay),
# "minotaur-mpt-7b": ("vm1wcsje126x1x", prompt_chat),
}
_memoized_models = defaultdict()
def get_model_pipeline(model_name):
if not _memoized_models.get(model_name):
kwargs = {}
if model_name in AVAILABLE_MODELS:
if len(AVAILABLE_MODELS[model_name]) >= 3:
kwargs["stop_tokens"] = AVAILABLE_MODELS[model_name][2]
_memoized_models[model_name] = Pipeline(AVAILABLE_MODELS[model_name][0], model_name, AVAILABLE_MODELS[model_name][1], **kwargs)
elif model_name in OAAIC_MODELS_ROLEPLAY:
_memoized_models[model_name] = Pipeline(OAAIC_MODELS_ROLEPLAY[model_name][0], model_name, OAAIC_MODELS_ROLEPLAY[model_name][1], **kwargs)
return _memoized_models.get(model_name)
start_message = """Below is a dialogue between a USER and an ASSISTANT. The USER may ask questions, request information, or provide instructions for a task, often supplementing with additional context. The ASSISTANT responds accurately and effectively, offering insights, answering questions, or executing tasks to the best of its ability based on the given information.
"""
def user(message, nudge_msg, history1, history2):
history1 = history1 or []
history2 = history2 or []
# Append the user's message to the conversation history
history1.append([message, nudge_msg])
history2.append([message, nudge_msg])
return "", nudge_msg, history1, history2
def token_generator(generator1, generator2, mapping_fn=None, fillvalue=None):
if not fillvalue:
fillvalue = ''
if not mapping_fn:
mapping_fn = lambda x: x
for output1, output2 in itertools.zip_longest(generator1, generator2, fillvalue=fillvalue):
tokens1 = re.findall(r'(.*?)(\s|$)', mapping_fn(output1))
tokens2 = re.findall(r'(.*?)(\s|$)', mapping_fn(output2))
for token1, token2 in itertools.zip_longest(tokens1, tokens2, fillvalue=''):
yield "".join(token1), "".join(token2)
def chat(history1, history2, system_msg, state):
history1 = history1 or []
history2 = history2 or []
arena_bots = None
if state and "models" in state and state['models']:
arena_bots = state['models']
if not arena_bots:
arena_bots = list(AVAILABLE_MODELS.keys())
random.shuffle(arena_bots)
# bootstrap a new bot into the arena more often
if "minotaur-15b-8k" not in arena_bots[0:2] and random.choice([True, False, False]):
arena_bots.insert(random.choice([0,1]), "minotaur-15b-8k")
battle = arena_bots[0:2]
model1 = get_model_pipeline(battle[0])
model2 = get_model_pipeline(battle[1])
messages1 = model1.transform_prompt(system_msg, history1)
messages2 = model2.transform_prompt(system_msg, history2)
# remove last space from assistant, some models output a ZWSP if you leave a space
messages1 = messages1.rstrip()
messages2 = messages2.rstrip()
model1_res = model1(messages1) # type: Generator[str, None, None]
model2_res = model2(messages2) # type: Generator[str, None, None]
res = token_generator(model1_res, model2_res, lambda x: x[0]['generated_text'], fillvalue=[{'generated_text': ''}]) # type: Generator[Tuple[str, str], None, None]
logging.info({"models": [model1.name, model2.name]})
for t1, t2 in res:
if t1 is not None:
history1[-1][1] += t1
if t2 is not None:
history2[-1][1] += t2
# stream the response
# [arena_chatbot1, arena_chatbot2, arena_message, reveal1, reveal2, arena_state]
yield history1, history2, "", gr.update(value=battle[0]), gr.update(value=battle[1]), {"models": [model1.name, model2.name]}
sleep(0.05)
def chosen_one(label, choice1_history, choice2_history, system_msg, nudge_msg, rlhf_persona, state):
if not state:
logging.error("missing state!!!")
# Generate a uuid for each submission
arena_battle_id = str(uuid.uuid4())
# Get the current timestamp
timestamp = datetime.datetime.now().isoformat()
# Put the item in the table
table.put_item(
Item={
'arena_battle_id': arena_battle_id,
'timestamp': timestamp,
'system_msg': system_msg,
'nudge_prefix': nudge_msg,
'choice1_name': state["models"][0],
'choice1': choice1_history,
'choice2_name': state["models"][1],
'choice2': choice2_history,
'label': label,
'rlhf_persona': rlhf_persona,
}
)
chosen_one_first = functools.partial(chosen_one, 1)
chosen_one_second = functools.partial(chosen_one, 2)
chosen_one_tie = functools.partial(chosen_one, 0)
chosen_one_suck = functools.partial(chosen_one, 1)
leaderboard_intro = """### TBD
- This is very much a work-in-progress, if you'd like to help build this out, join us on [Discord](https://discord.gg/QYF8QrtEUm)
"""
elo_scores = load_dataset("openaccess-ai-collective/chatbot-arena-elo-scores")
elo_scores = elo_scores["train"].sort("elo_score", reverse=True)
def refresh_md():
return leaderboard_intro + "\n" + dataset_to_markdown()
def fetch_elo_scores():
elo_scores = load_dataset("openaccess-ai-collective/chatbot-arena-elo-scores")
elo_scores = elo_scores["train"].sort("elo_score", reverse=True)
return elo_scores
def dataset_to_markdown():
dataset = fetch_elo_scores()
# Get column names (dataset features)
columns = list(dataset.features.keys())
# Start markdown string with table headers
markdown_string = "| " + " | ".join(columns) + " |\n"
# Add markdown table row separator for headers
markdown_string += "| " + " | ".join("---" for _ in columns) + " |\n"
# Add each row from dataset to the markdown string
for i in range(len(dataset)):
row = dataset[i]
markdown_string += "| " + " | ".join(str(row[column]) for column in columns) + " |\n"
return markdown_string
"""
OpenAccess AI Chatbots chat
"""
def open_clear_chat(chat_history_state, chat_message, nudge_msg):
chat_history_state = []
chat_message = ''
nudge_msg = ''
return chat_history_state, chat_message, nudge_msg
def open_user(message, nudge_msg, history):
history = history or []
# Append the user's message to the conversation history
history.append([message, nudge_msg])
return "", nudge_msg, history
def open_chat(model_name, history, system_msg, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
history = history or []
model = get_model_pipeline(model_name)
config = model.get_generation_config()
config["max_new_tokens"] = max_new_tokens
config["temperature"] = temperature
config["temperature"] = temperature
config["top_p"] = top_p
config["top_k"] = top_k
config["repetition_penalty"] = repetition_penalty
messages = model.transform_prompt(system_msg, history)
# remove last space from assistant, some models output a ZWSP if you leave a space
messages = messages.rstrip()
model_res = model(messages, config=config) # type: Generator[List[Dict[str, str]], None, None]
for res in model_res:
# tokens = re.findall(r'\s*\S+\s*', res[0]['generated_text'])
tokens = re.findall(r'(.*?)(\s|$)', res[0]['generated_text'])
for subtoken in tokens:
subtoken = "".join(subtoken)
history[-1][1] += subtoken
# stream the response
yield history, history, ""
sleep(0.01)
def open_rp_chat(model_name, history, system_msg, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
history = history or []
model = get_model_pipeline(f"{model_name}-roleplay")
config = model.get_generation_config()
config["max_new_tokens"] = max_new_tokens
config["temperature"] = temperature
config["temperature"] = temperature
config["top_p"] = top_p
config["top_k"] = top_k
config["repetition_penalty"] = repetition_penalty
messages = model.transform_prompt(system_msg, history)
# remove last space from assistant, some models output a ZWSP if you leave a space
messages = messages.rstrip()
model_res = model(messages, config=config) # type: Generator[List[Dict[str, str]], None, None]
for res in model_res:
tokens = re.findall(r'(.*?)(\s|$)', res[0]['generated_text'])
# tokens = re.findall(r'\s*\S+\s*', res[0]['generated_text'])
for subtoken in tokens:
subtoken = "".join(subtoken)
history[-1][1] += subtoken
# stream the response
yield history, history, ""
sleep(0.01)
with gr.Blocks() as arena:
with gr.Row():
with gr.Column():
gr.Markdown(f"""
### brought to you by OpenAccess AI Collective
- Checkout out [our writeup on how this was built.](https://medium.com/@winglian/inference-any-llm-with-serverless-in-15-minutes-69eeb548a41d)
- This Space runs on CPU only, and uses GGML with GPU support via Runpod Serverless.
- Responses may not stream immediately due to cold starts on Serverless.
- Some responses WILL take AT LEAST 20 seconds to respond
- The Chatbot Arena (for now), is single turn only. Responses will be cleared after submission.
- Responses from the Arena will be used for building reward models. These reward models can be bucketed by Personas.
- [๐ต Consider Donating on our Patreon](http://patreon.com/OpenAccessAICollective) or become a [GitHub Sponsor](https://github.com/sponsors/OpenAccess-AI-Collective)
- Join us on [Discord](https://discord.gg/PugNNHAF5r)
""")
with gr.Tab("Chatbot Arena"):
with gr.Row():
with gr.Column():
arena_chatbot1 = gr.Chatbot(label="Chatbot A")
with gr.Column():
arena_chatbot2 = gr.Chatbot(label="Chatbot B")
with gr.Row():
choose1 = gr.Button(value="๐ Prefer left (A)", variant="secondary", visible=False).style(full_width=True)
choose2 = gr.Button(value="๐ Prefer right (B)", variant="secondary", visible=False).style(full_width=True)
choose3 = gr.Button(value="๐ค Tie", variant="secondary", visible=False).style(full_width=True)
choose4 = gr.Button(value="๐คฎ Both are bad", variant="secondary", visible=False).style(full_width=True)
with gr.Row():
reveal1 = gr.Textbox(label="Model Name", value="", interactive=False, visible=False).style(full_width=True)
reveal2 = gr.Textbox(label="Model Name", value="", interactive=False, visible=False).style(full_width=True)
with gr.Row():
dismiss_reveal = gr.Button(value="Dismiss & Continue", variant="secondary", visible=False).style(full_width=True)
with gr.Row():
with gr.Column():
arena_message = gr.Textbox(
label="What do you want to ask?",
placeholder="Ask me anything.",
lines=3,
)
with gr.Column():
arena_rlhf_persona = gr.Textbox(
"", label="Persona Tags", interactive=True, visible=True, placeholder="Tell us about how you are judging the quality. ex: #CoT #SFW #NSFW #helpful #ethical #creativity", lines=2)
arena_system_msg = gr.Textbox(
start_message, label="System Message", interactive=True, visible=True, placeholder="system prompt", lines=8)
arena_nudge_msg = gr.Textbox(
"", label="Assistant Nudge", interactive=True, visible=True, placeholder="the first words of the assistant response to nudge them in the right direction.", lines=2)
with gr.Row():
arena_submit = gr.Button(value="Send message", variant="secondary").style(full_width=True)
arena_clear = gr.Button(value="New topic", variant="secondary").style(full_width=False)
# arena_regenerate = gr.Button(value="Regenerate", variant="secondary").style(full_width=False)
arena_state = gr.State({})
arena_clear.click(lambda: None, None, arena_chatbot1, queue=False)
arena_clear.click(lambda: None, None, arena_chatbot2, queue=False)
arena_clear.click(lambda: None, None, arena_message, queue=False)
arena_clear.click(lambda: None, None, arena_nudge_msg, queue=False)
arena_clear.click(lambda: None, None, arena_state, queue=False)
submit_click_event = arena_submit.click(
lambda *args: (
gr.update(visible=False, interactive=False),
gr.update(visible=False),
gr.update(visible=False),
),
inputs=[], outputs=[arena_message, arena_clear, arena_submit], queue=True
).then(
fn=user, inputs=[arena_message, arena_nudge_msg, arena_chatbot1, arena_chatbot2], outputs=[arena_message, arena_nudge_msg, arena_chatbot1, arena_chatbot2], queue=True
).then(
fn=chat, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_state], outputs=[arena_chatbot1, arena_chatbot2, arena_message, reveal1, reveal2, arena_state], queue=True
).then(
lambda *args: (
gr.update(visible=False, interactive=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
),
inputs=[arena_message, arena_nudge_msg, arena_system_msg], outputs=[arena_message, choose1, choose2, choose3, choose4, arena_clear, arena_submit], queue=True
)
choose1_click_event = choose1.click(
fn=chosen_one_first, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_nudge_msg, arena_rlhf_persona, arena_state], outputs=[], queue=True
).then(
lambda *args: (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
),
inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True
)
choose2_click_event = choose2.click(
fn=chosen_one_second, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_nudge_msg, arena_rlhf_persona, arena_state], outputs=[], queue=True
).then(
lambda *args: (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
),
inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True
)
choose3_click_event = choose3.click(
fn=chosen_one_tie, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_nudge_msg, arena_rlhf_persona, arena_state], outputs=[], queue=True
).then(
lambda *args: (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
),
inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True
)
choose4_click_event = choose4.click(
fn=chosen_one_suck, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_nudge_msg, arena_rlhf_persona, arena_state], outputs=[], queue=True
).then(
lambda *args: (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
),
inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True
)
dismiss_click_event = dismiss_reveal.click(
lambda *args: (
gr.update(visible=True, interactive=True),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
None,
None,
None,
),
inputs=[], outputs=[
arena_message,
dismiss_reveal,
arena_clear, arena_submit,
reveal1, reveal2,
arena_chatbot1, arena_chatbot2,
arena_state,
], queue=True
)
with gr.Tab("Leaderboard"):
with gr.Column():
leaderboard_markdown = gr.Markdown(f"""{leaderboard_intro}
{dataset_to_markdown()}
""")
leaderboad_refresh = gr.Button(value="Refresh Leaderboard", variant="secondary").style(full_width=True)
leaderboad_refresh.click(fn=refresh_md, inputs=[], outputs=[leaderboard_markdown])
with gr.Tab("OAAIC Chatbots"):
gr.Markdown("# GGML Spaces Chatbot Demo")
open_model_choice = gr.Dropdown(label="Model", choices=OAAIC_MODELS, value=OAAIC_MODELS[0])
open_chatbot = gr.Chatbot().style(height=400)
with gr.Row():
open_message = gr.Textbox(
label="What do you want to chat about?",
placeholder="Ask me anything.",
lines=3,
)
with gr.Row():
open_submit = gr.Button(value="Send message", variant="secondary").style(full_width=True)
open_roleplay = gr.Button(value="Roleplay", variant="secondary").style(full_width=True)
open_clear = gr.Button(value="New topic", variant="secondary").style(full_width=False)
open_stop = gr.Button(value="Stop", variant="secondary").style(full_width=False)
with gr.Row():
with gr.Column():
open_max_tokens = gr.Slider(20, 1000, label="Max Tokens", step=20, value=300)
open_temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=0.8)
open_top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95)
open_top_k = gr.Slider(0, 100, label="Top K", step=1, value=40)
open_repetition_penalty = gr.Slider(0.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1)
open_system_msg = gr.Textbox(
start_message, label="System Message", interactive=True, visible=True, placeholder="system prompt, useful for RP", lines=5)
open_nudge_msg = gr.Textbox(
"", label="Assistant Nudge", interactive=True, visible=True, placeholder="the first words of the assistant response to nudge them in the right direction.", lines=1)
open_chat_history_state = gr.State()
open_clear.click(open_clear_chat, inputs=[open_chat_history_state, open_message, open_nudge_msg], outputs=[open_chat_history_state, open_message, open_nudge_msg], queue=False)
open_clear.click(lambda: None, None, open_chatbot, queue=False)
open_submit_click_event = open_submit.click(
fn=open_user, inputs=[open_message, open_nudge_msg, open_chat_history_state], outputs=[open_message, open_nudge_msg, open_chat_history_state], queue=True
).then(
fn=open_chat, inputs=[open_model_choice, open_chat_history_state, open_system_msg, open_max_tokens, open_temperature, open_top_p, open_top_k, open_repetition_penalty], outputs=[open_chatbot, open_chat_history_state, open_message], queue=True
)
open_roleplay_click_event = open_roleplay.click(
fn=open_user, inputs=[open_message, open_nudge_msg, open_chat_history_state], outputs=[open_message, open_nudge_msg, open_chat_history_state], queue=True
).then(
fn=open_rp_chat, inputs=[open_model_choice, open_chat_history_state, open_system_msg, open_max_tokens, open_temperature, open_top_p, open_top_k, open_repetition_penalty], outputs=[open_chatbot, open_chat_history_state, open_message], queue=True
)
open_stop.click(fn=None, inputs=None, outputs=None, cancels=[open_submit_click_event, open_roleplay_click_event], queue=False)
arena.queue(concurrency_count=5, max_size=16).launch(debug=True, server_name="0.0.0.0", server_port=7860) |