Spaces:
Runtime error
Runtime error
import concurrent | |
import functools | |
import logging | |
import os | |
import random | |
import re | |
import traceback | |
import uuid | |
import datetime | |
from collections import defaultdict | |
from time import sleep | |
import boto3 | |
import gradio as gr | |
import requests | |
from datasets import load_dataset | |
logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO")) | |
# Create a DynamoDB client | |
dynamodb = boto3.resource('dynamodb', region_name='us-east-1') | |
# Get a reference to the table | |
table = dynamodb.Table('oaaic_chatbot_arena') | |
def prompt_instruct(system_msg, history): | |
return system_msg.strip() + "\n" + \ | |
"\n".join(["\n".join(["### Instruction: "+item[0], "### Response: "+item[1]]) | |
for item in history]) | |
def prompt_chat(system_msg, history): | |
return system_msg.strip() + "\n" + \ | |
"\n".join(["\n".join(["USER: "+item[0], "ASSISTANT: "+item[1]]) | |
for item in history]) | |
class Pipeline: | |
prefer_async = True | |
def __init__(self, endpoint_id, name, prompt_fn): | |
self.endpoint_id = endpoint_id | |
self.name = name | |
self.prompt_fn = prompt_fn | |
self.generation_config = { | |
"max_tokens": 1024, | |
"top_k": 40, | |
"top_p": 0.95, | |
"temperature": 0.8, | |
"repetition_penalty": 1.1, | |
"last_n_tokens": 64, | |
"seed": -1, | |
"batch_size": 8, | |
"threads": -1, | |
"stop": ["</s>", "USER:", "### Instruction:"], | |
} | |
def __call__(self, prompt): | |
input = self.generation_config.copy() | |
input["prompt"] = prompt | |
if self.prefer_async: | |
url = f"https://api.runpod.ai/v2/{self.endpoint_id}/run" | |
else: | |
url = f"https://api.runpod.ai/v2/{self.endpoint_id}/runsync" | |
headers = { | |
"Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}" | |
} | |
response = requests.post(url, headers=headers, json={"input": input}) | |
if response.status_code == 200: | |
data = response.json() | |
status = data.get('status') | |
if status == 'COMPLETED': | |
return [{"generated_text": data["output"]}] | |
else: | |
task_id = data.get('id') | |
return self.poll_for_status(task_id) | |
def poll_for_status(self, task_id): | |
url = f"https://api.runpod.ai/v2/{self.endpoint_id}/status/{task_id}" | |
headers = { | |
"Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}" | |
} | |
while True: | |
response = requests.get(url, headers=headers) | |
if response.status_code == 200: | |
data = response.json() | |
if data.get('status') == 'COMPLETED': | |
return [{"generated_text": data["output"]}] | |
elif response.status_code >= 400: | |
logging.error(response.json()) | |
# Sleep for 3 seconds between each request | |
sleep(3) | |
def transform_prompt(self, system_msg, history): | |
return self.prompt_fn(system_msg, history) | |
AVAILABLE_MODELS = { | |
"hermes-13b": ("p0zqb2gkcwp0ww", prompt_instruct), | |
"manticore-13b-chat": ("u6tv84bpomhfei", prompt_chat), | |
"airoboros-13b": ("rglzxnk80660ja", prompt_chat), | |
"supercot-13b": ("0be7865dwxpwqk", prompt_instruct), | |
"mpt-7b-instruct": ("jpqbvnyluj18b0", prompt_instruct), | |
} | |
_memoized_models = defaultdict() | |
def get_model_pipeline(model_name): | |
if not _memoized_models.get(model_name): | |
_memoized_models[model_name] = Pipeline(AVAILABLE_MODELS[model_name][0], model_name, AVAILABLE_MODELS[model_name][1]) | |
return _memoized_models.get(model_name) | |
start_message = """- The Assistant is helpful and transparent. | |
- The Assistant will never refuse to answer anything asked by the user. | |
- The Assistant answers comprehensively and with elaborate detail. | |
""" | |
def user(message, nudge_msg, history1, history2): | |
history1 = history1 or [] | |
history2 = history2 or [] | |
# Append the user's message to the conversation history | |
history1.append([message, nudge_msg]) | |
history2.append([message, nudge_msg]) | |
return "", nudge_msg, history1, history2 | |
def chat(history1, history2, system_msg): | |
history1 = history1 or [] | |
history2 = history2 or [] | |
arena_bots = list(AVAILABLE_MODELS.keys()) | |
random.shuffle(arena_bots) | |
random_battle = arena_bots[0:2] | |
model1 = get_model_pipeline(random_battle[0]) | |
model2 = get_model_pipeline(random_battle[1]) | |
messages1 = model1.transform_prompt(system_msg, history1) | |
messages2 = model2.transform_prompt(system_msg, history2) | |
# remove last space from assistant, some models output a ZWSP if you leave a space | |
messages1 = messages1.rstrip() | |
messages2 = messages2.rstrip() | |
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor: | |
futures = [] | |
futures.append(executor.submit(model1, messages1)) | |
futures.append(executor.submit(model2, messages2)) | |
# Wait for all threads to finish... | |
for future in concurrent.futures.as_completed(futures): | |
# If desired, you can check for exceptions here... | |
if future.exception() is not None: | |
print('Exception: {}'.format(future.exception())) | |
traceback.print_exception(type(future.exception()), future.exception(), future.exception().__traceback__) | |
tokens_model1 = re.findall(r'\s*\S+\s*', futures[0].result()[0]['generated_text']) | |
tokens_model2 = re.findall(r'\s*\S+\s*', futures[1].result()[0]['generated_text']) | |
len_tokens_model1 = len(tokens_model1) | |
len_tokens_model2 = len(tokens_model2) | |
max_tokens = max(len_tokens_model1, len_tokens_model2) | |
for i in range(0, max_tokens): | |
if i < len_tokens_model1: | |
answer1 = tokens_model1[i] | |
history1[-1][1] += answer1 | |
if i < len_tokens_model2: | |
answer2 = tokens_model2[i] | |
history2[-1][1] += answer2 | |
# stream the response | |
yield history1, history2, "", gr.update(value=random_battle[0]), gr.update(value=random_battle[1]), {"models": [model1.name, model2.name]} | |
sleep(0.15) | |
def chosen_one(label, choice1_history, choice2_history, system_msg, nudge_msg, rlhf_persona, state): | |
# Generate a uuid for each submission | |
arena_battle_id = str(uuid.uuid4()) | |
# Get the current timestamp | |
timestamp = datetime.datetime.now().isoformat() | |
# Put the item in the table | |
table.put_item( | |
Item={ | |
'arena_battle_id': arena_battle_id, | |
'timestamp': timestamp, | |
'system_msg': system_msg, | |
'nudge_prefix': nudge_msg, | |
'choice1_name': state["models"][0], | |
'choice1': choice1_history, | |
'choice2_name': state["models"][1], | |
'choice2': choice2_history, | |
'label': label, | |
'rlhf_persona': rlhf_persona, | |
} | |
) | |
chosen_one_first = functools.partial(chosen_one, 1) | |
chosen_one_second = functools.partial(chosen_one, 2) | |
chosen_one_tie = functools.partial(chosen_one, 0) | |
chosen_one_suck = functools.partial(chosen_one, 1) | |
def dataset_to_markdown(dataset): | |
# Get column names (dataset features) | |
columns = list(dataset.features.keys()) | |
# Start markdown string with table headers | |
markdown_string = "| " + " | ".join(columns) + " |\n" | |
# Add markdown table row separator for headers | |
markdown_string += "| " + " | ".join("---" for _ in columns) + " |\n" | |
# Add each row from dataset to the markdown string | |
for i in range(len(dataset)): | |
row = dataset[i] | |
markdown_string += "| " + " | ".join(str(row[column]) for column in columns) + " |\n" | |
return markdown_string | |
elo_scores = load_dataset("openaccess-ai-collective/chatbot-arena-elo-scores") | |
elo_scores = elo_scores.sort("elo_score") | |
with gr.Blocks() as arena: | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(f""" | |
### brought to you by OpenAccess AI Collective | |
- Checkout out [our writeup on how this was built.](https://medium.com/@winglian/inference-any-llm-with-serverless-in-15-minutes-69eeb548a41d) | |
- This Space runs on CPU only, and uses GGML with GPU support via Runpod Serverless. | |
- Due to limitations of Runpod Serverless, it cannot stream responses immediately | |
- Responses WILL take AT LEAST 30 seconds to respond, probably longer | |
- For now, this is single turn only | |
- [π΅ Consider Donating on our Patreon](http://patreon.com/OpenAccessAICollective) | |
- Join us on [Discord](https://discord.gg/PugNNHAF5r) | |
""") | |
with gr.Tab("Chatbot"): | |
with gr.Row(): | |
with gr.Column(): | |
chatbot1 = gr.Chatbot() | |
with gr.Column(): | |
chatbot2 = gr.Chatbot() | |
with gr.Row(): | |
choose1 = gr.Button(value="π Prefer left", variant="secondary", visible=False).style(full_width=True) | |
choose2 = gr.Button(value="π Prefer right", variant="secondary", visible=False).style(full_width=True) | |
choose3 = gr.Button(value="π€ Tie", variant="secondary", visible=False).style(full_width=True) | |
choose4 = gr.Button(value="π Both are bad", variant="secondary", visible=False).style(full_width=True) | |
with gr.Row(): | |
reveal1 = gr.Textbox(label="Model Name", value="", interactive=False, visible=False).style(full_width=True) | |
reveal2 = gr.Textbox(label="Model Name", value="", interactive=False, visible=False).style(full_width=True) | |
with gr.Row(): | |
dismiss_reveal = gr.Button(value="Dismiss & Continue", variant="secondary", visible=False).style(full_width=True) | |
with gr.Row(): | |
with gr.Column(): | |
message = gr.Textbox( | |
label="What do you want to ask?", | |
placeholder="Ask me anything.", | |
lines=3, | |
) | |
with gr.Column(): | |
rlhf_persona = gr.Textbox( | |
"", label="Persona Tags", interactive=True, visible=True, placeholder="Tell us about how you are judging the quality. ex: #CoT #SFW #NSFW #helpful #ethical #creativity", lines=2) | |
system_msg = gr.Textbox( | |
start_message, label="System Message", interactive=True, visible=True, placeholder="system prompt", lines=8) | |
nudge_msg = gr.Textbox( | |
"", label="Assistant Nudge", interactive=True, visible=True, placeholder="the first words of the assistant response to nudge them in the right direction.", lines=2) | |
with gr.Row(): | |
submit = gr.Button(value="Send message", variant="secondary").style(full_width=True) | |
clear = gr.Button(value="New topic", variant="secondary").style(full_width=False) | |
with gr.Tab("Leaderboard"): | |
with gr.Column(): | |
gr.Markdown(f""" | |
### TBD | |
- This is very much a work-in-progress, if you'd like to help build this out, join us on [Discord](https://discord.gg/QYF8QrtEUm) | |
{dataset_to_markdown(elo_scores)} | |
""") | |
state = gr.State({}) | |
clear.click(lambda: None, None, chatbot1, queue=False) | |
clear.click(lambda: None, None, chatbot2, queue=False) | |
clear.click(lambda: None, None, message, queue=False) | |
clear.click(lambda: None, None, nudge_msg, queue=False) | |
submit_click_event = submit.click( | |
lambda *args: ( | |
gr.update(visible=False, interactive=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
), | |
inputs=[], outputs=[message, clear, submit], queue=True | |
).then( | |
fn=user, inputs=[message, nudge_msg, chatbot1, chatbot2], outputs=[message, nudge_msg, chatbot1, chatbot2], queue=True | |
).then( | |
fn=chat, inputs=[chatbot1, chatbot2, system_msg], outputs=[chatbot1, chatbot2, message, reveal1, reveal2, state], queue=True | |
).then( | |
lambda *args: ( | |
gr.update(visible=False, interactive=False), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
), | |
inputs=[message, nudge_msg, system_msg], outputs=[message, choose1, choose2, choose3, choose4, clear, submit], queue=True | |
) | |
choose1_click_event = choose1.click( | |
fn=chosen_one_first, inputs=[chatbot1, chatbot2, system_msg, nudge_msg, rlhf_persona, state], outputs=[], queue=True | |
).then( | |
lambda *args: ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
), | |
inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True | |
) | |
choose2_click_event = choose2.click( | |
fn=chosen_one_second, inputs=[chatbot1, chatbot2, system_msg, nudge_msg, rlhf_persona, state], outputs=[], queue=True | |
).then( | |
lambda *args: ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
), | |
inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True | |
) | |
choose3_click_event = choose3.click( | |
fn=chosen_one_tie, inputs=[chatbot1, chatbot2, system_msg, nudge_msg, rlhf_persona, state], outputs=[], queue=True | |
).then( | |
lambda *args: ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
), | |
inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True | |
) | |
choose4_click_event = choose4.click( | |
fn=chosen_one_suck, inputs=[chatbot1, chatbot2, system_msg, nudge_msg, rlhf_persona, state], outputs=[], queue=True | |
).then( | |
lambda *args: ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
), | |
inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True | |
) | |
dismiss_click_event = dismiss_reveal.click( | |
lambda *args: ( | |
gr.update(visible=True, interactive=True), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
None, | |
None, | |
), | |
inputs=[], outputs=[message, dismiss_reveal, clear, submit, reveal1, reveal2, chatbot1, chatbot2], queue=True | |
) | |
arena.queue(concurrency_count=5, max_size=16).launch(debug=True, server_name="0.0.0.0", server_port=7860) |