Spaces:
Runtime error
Runtime error
import concurrent | |
import functools | |
import logging | |
import os | |
import random | |
import re | |
import traceback | |
import uuid | |
import datetime | |
from collections import deque | |
import itertools | |
from collections import defaultdict | |
from time import sleep | |
from typing import Generator, Tuple, List, Dict | |
import boto3 | |
import gradio as gr | |
import requests | |
from datasets import load_dataset | |
logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO")) | |
logging.getLogger("httpx").setLevel(logging.WARNING) | |
# Create a DynamoDB client | |
dynamodb = boto3.resource('dynamodb', region_name='us-east-1') | |
# Get a reference to the table | |
table = dynamodb.Table('oaaic_chatbot_arena') | |
def prompt_instruct(system_msg, history): | |
return system_msg.strip() + "\n" + \ | |
"\n".join(["\n".join(["### Instruction: "+item[0], "### Response: "+item[1]]) | |
for item in history]) | |
def prompt_chat(system_msg, history): | |
return system_msg.strip() + "\n" + \ | |
"\n".join(["\n".join(["USER: "+item[0], "ASSISTANT: "+item[1]]) | |
for item in history]) | |
def prompt_roleplay(system_msg, history): | |
return "<|system|>" + system_msg.strip() + "\n" + \ | |
"\n".join(["\n".join(["<|user|>"+item[0], "<|model|>"+item[1]]) | |
for item in history]) | |
class Pipeline: | |
prefer_async = True | |
def __init__(self, endpoint_id, name, prompt_fn, stop_tokens=None): | |
self.endpoint_id = endpoint_id | |
self.name = name | |
self.prompt_fn = prompt_fn | |
stop_tokens = stop_tokens or [] | |
self.generation_config = { | |
"max_new_tokens": 1024, | |
"top_k": 40, | |
"top_p": 0.90, | |
"temperature": 0.72, | |
"repetition_penalty": 1.22, | |
"last_n_tokens": 64, | |
"seed": -1, | |
"batch_size": 8, | |
"threads": -1, | |
"stop": ["</s>", "USER:", "### Instruction:"] + stop_tokens, | |
} | |
def get_generation_config(self): | |
return self.generation_config.copy() | |
def __call__(self, prompt, config=None) -> Generator[List[Dict[str, str]], None, None]: | |
input = config if config else self.generation_config.copy() | |
input["prompt"] = prompt | |
if self.prefer_async: | |
url = f"https://api.runpod.ai/v2/{self.endpoint_id}/run" | |
else: | |
url = f"https://api.runpod.ai/v2/{self.endpoint_id}/runsync" | |
headers = { | |
"Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}" | |
} | |
response = requests.post(url, headers=headers, json={"input": input}) | |
if response.status_code == 200: | |
data = response.json() | |
task_id = data.get('id') | |
return self.stream_output(task_id) | |
def stream_output(self,task_id) -> Generator[List[Dict[str, str]], None, None]: | |
url = f"https://api.runpod.ai/v2/{self.endpoint_id}/stream/{task_id}" | |
headers = { | |
"Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}" | |
} | |
while True: | |
try: | |
response = requests.get(url, headers=headers) | |
if response.status_code == 200: | |
data = response.json() | |
yield [{"generated_text": "".join([s["output"] for s in data["stream"]])}] | |
if data.get('status') == 'COMPLETED': | |
return | |
elif response.status_code >= 400: | |
logging.error(response.json()) | |
except ConnectionError: | |
pass | |
def poll_for_status(self, task_id): | |
url = f"https://api.runpod.ai/v2/{self.endpoint_id}/status/{task_id}" | |
headers = { | |
"Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}" | |
} | |
while True: | |
response = requests.get(url, headers=headers) | |
if response.status_code == 200: | |
data = response.json() | |
if data.get('status') == 'COMPLETED': | |
return [{"generated_text": data["output"]}] | |
elif response.status_code >= 400: | |
logging.error(response.json()) | |
# Sleep for 3 seconds between each request | |
sleep(3) | |
def transform_prompt(self, system_msg, history): | |
return self.prompt_fn(system_msg, history) | |
AVAILABLE_MODELS = { | |
"hermes-13b": ("p0zqb2gkcwp0ww", prompt_instruct), | |
"manticore-13b-chat": ("u6tv84bpomhfei", prompt_chat), | |
"airoboros-13b": ("rglzxnk80660ja", prompt_chat), | |
"wizard-vicuna-13b": ("9vvpikt4ttyqos", prompt_chat), | |
"lmsys-vicuna-13b": ("2nlb32ydkaz6yd", prompt_chat), | |
"supercot-13b": ("0be7865dwxpwqk", prompt_instruct, ["Instruction:"]), | |
"mpt-7b-instruct": ("jpqbvnyluj18b0", prompt_instruct), | |
"guanaco-13b": ("yxl8w98z017mw2", prompt_instruct), | |
# "minotaur-13b": ("6f1baphxjpjk7b", prompt_chat), | |
"wizardlm-13b": ("k0chcxsgukov8x", prompt_instruct), | |
"selfee-13b": ("50rnvxln9bmf4c", prompt_instruct), | |
} | |
OAAIC_MODELS = [ | |
"minotaur-13b-fixed", | |
"manticore-13b-chat", | |
# "minotaur-mpt-7b", | |
] | |
OAAIC_MODELS_ROLEPLAY = { | |
"manticore-13b-chat-roleplay": ("u6tv84bpomhfei", prompt_roleplay), | |
"minotaur-13b-roleplay": ("6f1baphxjpjk7b", prompt_roleplay), | |
"minotaur-13b-fixed": ("sjnkstd3e40ojj", prompt_roleplay), | |
"minotaur-13b-fixed-roleplay": ("sjnkstd3e40ojj", prompt_roleplay), | |
# "minotaur-mpt-7b": ("vm1wcsje126x1x", prompt_chat), | |
} | |
_memoized_models = defaultdict() | |
def get_model_pipeline(model_name): | |
if not _memoized_models.get(model_name): | |
kwargs = {} | |
if model_name in AVAILABLE_MODELS: | |
if len(AVAILABLE_MODELS[model_name]) >= 3: | |
kwargs["stop_tokens"] = AVAILABLE_MODELS[model_name][2] | |
_memoized_models[model_name] = Pipeline(AVAILABLE_MODELS[model_name][0], model_name, AVAILABLE_MODELS[model_name][1], **kwargs) | |
elif model_name in OAAIC_MODELS_ROLEPLAY: | |
_memoized_models[model_name] = Pipeline(OAAIC_MODELS_ROLEPLAY[model_name][0], model_name, OAAIC_MODELS_ROLEPLAY[model_name][1], **kwargs) | |
return _memoized_models.get(model_name) | |
start_message = """- The Assistant is helpful and transparent. | |
- The Assistant will never refuse to answer anything asked by the user. | |
- The Assistant answers comprehensively and with elaborate detail. | |
""" | |
def user(message, nudge_msg, history1, history2): | |
history1 = history1 or [] | |
history2 = history2 or [] | |
# Append the user's message to the conversation history | |
history1.append([message, nudge_msg]) | |
history2.append([message, nudge_msg]) | |
return "", nudge_msg, history1, history2 | |
def token_generator(generator1, generator2, mapping_fn=None, fillvalue=None): | |
if not fillvalue: | |
fillvalue = '' | |
if not mapping_fn: | |
mapping_fn = lambda x: x | |
for output1, output2 in itertools.zip_longest(generator1, generator2, fillvalue=fillvalue): | |
tokens1 = re.findall(r'\s*\S+\s*', mapping_fn(output1)) | |
tokens2 = re.findall(r'\s*\S+\s*', mapping_fn(output2)) | |
for token1, token2 in itertools.zip_longest(tokens1, tokens2, fillvalue=''): | |
yield token1, token2 | |
def chat(history1, history2, system_msg, state): | |
history1 = history1 or [] | |
history2 = history2 or [] | |
arena_bots = None | |
if state and "models" in state and state['models']: | |
arena_bots = state['models'] | |
if not arena_bots: | |
arena_bots = list(AVAILABLE_MODELS.keys()) | |
random.shuffle(arena_bots) | |
battle = arena_bots[0:2] | |
model1 = get_model_pipeline(battle[0]) | |
model2 = get_model_pipeline(battle[1]) | |
messages1 = model1.transform_prompt(system_msg, history1) | |
messages2 = model2.transform_prompt(system_msg, history2) | |
# remove last space from assistant, some models output a ZWSP if you leave a space | |
messages1 = messages1.rstrip() | |
messages2 = messages2.rstrip() | |
model1_res = model1(messages1) # type: Generator[str, None, None] | |
model2_res = model2(messages2) # type: Generator[str, None, None] | |
res = token_generator(model1_res, model2_res, lambda x: x[0]['generated_text'], fillvalue=[{'generated_text': ''}]) # type: Generator[Tuple[str, str], None, None] | |
logging.info({"models": [model1.name, model2.name]}) | |
for t1, t2 in res: | |
if t1 is not None: | |
history1[-1][1] += t1 | |
if t2 is not None: | |
history2[-1][1] += t2 | |
# stream the response | |
# [arena_chatbot1, arena_chatbot2, arena_message, reveal1, reveal2, arena_state] | |
yield history1, history2, "", gr.update(value=battle[0]), gr.update(value=battle[1]), {"models": [model1.name, model2.name]} | |
sleep(0.2) | |
def chosen_one(label, choice1_history, choice2_history, system_msg, nudge_msg, rlhf_persona, state): | |
if not state: | |
logging.error("missing state!!!") | |
# Generate a uuid for each submission | |
arena_battle_id = str(uuid.uuid4()) | |
# Get the current timestamp | |
timestamp = datetime.datetime.now().isoformat() | |
# Put the item in the table | |
table.put_item( | |
Item={ | |
'arena_battle_id': arena_battle_id, | |
'timestamp': timestamp, | |
'system_msg': system_msg, | |
'nudge_prefix': nudge_msg, | |
'choice1_name': state["models"][0], | |
'choice1': choice1_history, | |
'choice2_name': state["models"][1], | |
'choice2': choice2_history, | |
'label': label, | |
'rlhf_persona': rlhf_persona, | |
} | |
) | |
chosen_one_first = functools.partial(chosen_one, 1) | |
chosen_one_second = functools.partial(chosen_one, 2) | |
chosen_one_tie = functools.partial(chosen_one, 0) | |
chosen_one_suck = functools.partial(chosen_one, 1) | |
leaderboard_intro = """### TBD | |
- This is very much a work-in-progress, if you'd like to help build this out, join us on [Discord](https://discord.gg/QYF8QrtEUm) | |
""" | |
elo_scores = load_dataset("openaccess-ai-collective/chatbot-arena-elo-scores") | |
elo_scores = elo_scores["train"].sort("elo_score", reverse=True) | |
def refresh_md(): | |
return leaderboard_intro + "\n" + dataset_to_markdown() | |
def fetch_elo_scores(): | |
elo_scores = load_dataset("openaccess-ai-collective/chatbot-arena-elo-scores") | |
elo_scores = elo_scores["train"].sort("elo_score", reverse=True) | |
return elo_scores | |
def dataset_to_markdown(): | |
dataset = fetch_elo_scores() | |
# Get column names (dataset features) | |
columns = list(dataset.features.keys()) | |
# Start markdown string with table headers | |
markdown_string = "| " + " | ".join(columns) + " |\n" | |
# Add markdown table row separator for headers | |
markdown_string += "| " + " | ".join("---" for _ in columns) + " |\n" | |
# Add each row from dataset to the markdown string | |
for i in range(len(dataset)): | |
row = dataset[i] | |
markdown_string += "| " + " | ".join(str(row[column]) for column in columns) + " |\n" | |
return markdown_string | |
""" | |
OpenAccess AI Chatbots chat | |
""" | |
def open_clear_chat(chat_history_state, chat_message, nudge_msg): | |
chat_history_state = [] | |
chat_message = '' | |
nudge_msg = '' | |
return chat_history_state, chat_message, nudge_msg | |
def open_user(message, nudge_msg, history): | |
history = history or [] | |
# Append the user's message to the conversation history | |
history.append([message, nudge_msg]) | |
return "", nudge_msg, history | |
def open_chat(model_name, history, system_msg, max_new_tokens, temperature, top_p, top_k, repetition_penalty): | |
history = history or [] | |
model = get_model_pipeline(model_name) | |
config = model.get_generation_config() | |
config["max_new_tokens"] = max_new_tokens | |
config["temperature"] = temperature | |
config["temperature"] = temperature | |
config["top_p"] = top_p | |
config["top_k"] = top_k | |
config["repetition_penalty"] = repetition_penalty | |
messages = model.transform_prompt(system_msg, history) | |
# remove last space from assistant, some models output a ZWSP if you leave a space | |
messages = messages.rstrip() | |
model_res = model(messages, config=config) # type: Generator[List[Dict[str, str]], None, None] | |
for res in model_res: | |
# tokens = re.findall(r'\s*\S+\s*', res[0]['generated_text']) | |
tokens = re.findall(r'(.*?)(\s|$)', res[0]['generated_text']) | |
for subtoken in tokens: | |
subtoken = "".join(subtoken) | |
history[-1][1] += subtoken | |
# stream the response | |
yield history, history, "" | |
sleep(0.01) | |
def open_rp_chat(model_name, history, system_msg, max_new_tokens, temperature, top_p, top_k, repetition_penalty): | |
history = history or [] | |
model = get_model_pipeline(f"{model_name}-roleplay") | |
config = model.get_generation_config() | |
config["max_new_tokens"] = max_new_tokens | |
config["temperature"] = temperature | |
config["temperature"] = temperature | |
config["top_p"] = top_p | |
config["top_k"] = top_k | |
config["repetition_penalty"] = repetition_penalty | |
messages = model.transform_prompt(system_msg, history) | |
# remove last space from assistant, some models output a ZWSP if you leave a space | |
messages = messages.rstrip() | |
model_res = model(messages, config=config) # type: Generator[List[Dict[str, str]], None, None] | |
for res in model_res: | |
tokens = re.findall(r'(.*?)(\s|$)', res[0]['generated_text']) | |
# tokens = re.findall(r'\s*\S+\s*', res[0]['generated_text']) | |
for subtoken in tokens: | |
subtoken = "".join(subtoken) | |
history[-1][1] += subtoken | |
# stream the response | |
yield history, history, "" | |
sleep(0.01) | |
with gr.Blocks() as arena: | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(f""" | |
### brought to you by OpenAccess AI Collective | |
- Checkout out [our writeup on how this was built.](https://medium.com/@winglian/inference-any-llm-with-serverless-in-15-minutes-69eeb548a41d) | |
- This Space runs on CPU only, and uses GGML with GPU support via Runpod Serverless. | |
- Responses may not stream immediately due to cold starts on Serverless. | |
- Some responses WILL take AT LEAST 20 seconds to respond | |
- The Chatbot Arena (for now), is single turn only. Responses will be cleared after submission. | |
- Responses from the Arena will be used for building reward models. These reward models can be bucketed by Personas. | |
- [💵 Consider Donating on our Patreon](http://patreon.com/OpenAccessAICollective) or become a [GitHub Sponsor](https://github.com/sponsors/OpenAccess-AI-Collective) | |
- Join us on [Discord](https://discord.gg/PugNNHAF5r) | |
""") | |
with gr.Tab("Chatbot Arena"): | |
with gr.Row(): | |
with gr.Column(): | |
arena_chatbot1 = gr.Chatbot(label="Chatbot A") | |
with gr.Column(): | |
arena_chatbot2 = gr.Chatbot(label="Chatbot B") | |
with gr.Row(): | |
choose1 = gr.Button(value="👈 Prefer left (A)", variant="secondary", visible=False).style(full_width=True) | |
choose2 = gr.Button(value="👉 Prefer right (B)", variant="secondary", visible=False).style(full_width=True) | |
choose3 = gr.Button(value="🤝 Tie", variant="secondary", visible=False).style(full_width=True) | |
choose4 = gr.Button(value="🤮 Both are bad", variant="secondary", visible=False).style(full_width=True) | |
with gr.Row(): | |
reveal1 = gr.Textbox(label="Model Name", value="", interactive=False, visible=False).style(full_width=True) | |
reveal2 = gr.Textbox(label="Model Name", value="", interactive=False, visible=False).style(full_width=True) | |
with gr.Row(): | |
dismiss_reveal = gr.Button(value="Dismiss & Continue", variant="secondary", visible=False).style(full_width=True) | |
with gr.Row(): | |
with gr.Column(): | |
arena_message = gr.Textbox( | |
label="What do you want to ask?", | |
placeholder="Ask me anything.", | |
lines=3, | |
) | |
with gr.Column(): | |
arena_rlhf_persona = gr.Textbox( | |
"", label="Persona Tags", interactive=True, visible=True, placeholder="Tell us about how you are judging the quality. ex: #CoT #SFW #NSFW #helpful #ethical #creativity", lines=2) | |
arena_system_msg = gr.Textbox( | |
start_message, label="System Message", interactive=True, visible=True, placeholder="system prompt", lines=8) | |
arena_nudge_msg = gr.Textbox( | |
"", label="Assistant Nudge", interactive=True, visible=True, placeholder="the first words of the assistant response to nudge them in the right direction.", lines=2) | |
with gr.Row(): | |
arena_submit = gr.Button(value="Send message", variant="secondary").style(full_width=True) | |
arena_clear = gr.Button(value="New topic", variant="secondary").style(full_width=False) | |
# arena_regenerate = gr.Button(value="Regenerate", variant="secondary").style(full_width=False) | |
arena_state = gr.State({}) | |
arena_clear.click(lambda: None, None, arena_chatbot1, queue=False) | |
arena_clear.click(lambda: None, None, arena_chatbot2, queue=False) | |
arena_clear.click(lambda: None, None, arena_message, queue=False) | |
arena_clear.click(lambda: None, None, arena_nudge_msg, queue=False) | |
arena_clear.click(lambda: None, None, arena_state, queue=False) | |
submit_click_event = arena_submit.click( | |
lambda *args: ( | |
gr.update(visible=False, interactive=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
), | |
inputs=[], outputs=[arena_message, arena_clear, arena_submit], queue=True | |
).then( | |
fn=user, inputs=[arena_message, arena_nudge_msg, arena_chatbot1, arena_chatbot2], outputs=[arena_message, arena_nudge_msg, arena_chatbot1, arena_chatbot2], queue=True | |
).then( | |
fn=chat, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_state], outputs=[arena_chatbot1, arena_chatbot2, arena_message, reveal1, reveal2, arena_state], queue=True | |
).then( | |
lambda *args: ( | |
gr.update(visible=False, interactive=False), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
), | |
inputs=[arena_message, arena_nudge_msg, arena_system_msg], outputs=[arena_message, choose1, choose2, choose3, choose4, arena_clear, arena_submit], queue=True | |
) | |
choose1_click_event = choose1.click( | |
fn=chosen_one_first, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_nudge_msg, arena_rlhf_persona, arena_state], outputs=[], queue=True | |
).then( | |
lambda *args: ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
), | |
inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True | |
) | |
choose2_click_event = choose2.click( | |
fn=chosen_one_second, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_nudge_msg, arena_rlhf_persona, arena_state], outputs=[], queue=True | |
).then( | |
lambda *args: ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
), | |
inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True | |
) | |
choose3_click_event = choose3.click( | |
fn=chosen_one_tie, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_nudge_msg, arena_rlhf_persona, arena_state], outputs=[], queue=True | |
).then( | |
lambda *args: ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
), | |
inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True | |
) | |
choose4_click_event = choose4.click( | |
fn=chosen_one_suck, inputs=[arena_chatbot1, arena_chatbot2, arena_system_msg, arena_nudge_msg, arena_rlhf_persona, arena_state], outputs=[], queue=True | |
).then( | |
lambda *args: ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
), | |
inputs=[], outputs=[choose1, choose2, choose3, choose4, dismiss_reveal, reveal1, reveal2], queue=True | |
) | |
dismiss_click_event = dismiss_reveal.click( | |
lambda *args: ( | |
gr.update(visible=True, interactive=True), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
None, | |
None, | |
None, | |
), | |
inputs=[], outputs=[ | |
arena_message, | |
dismiss_reveal, | |
arena_clear, arena_submit, | |
reveal1, reveal2, | |
arena_chatbot1, arena_chatbot2, | |
arena_state, | |
], queue=True | |
) | |
with gr.Tab("Leaderboard"): | |
with gr.Column(): | |
leaderboard_markdown = gr.Markdown(f"""{leaderboard_intro} | |
{dataset_to_markdown()} | |
""") | |
leaderboad_refresh = gr.Button(value="Refresh Leaderboard", variant="secondary").style(full_width=True) | |
leaderboad_refresh.click(fn=refresh_md, inputs=[], outputs=[leaderboard_markdown]) | |
with gr.Tab("OAAIC Chatbots"): | |
gr.Markdown("# GGML Spaces Chatbot Demo") | |
open_model_choice = gr.Dropdown(label="Model", choices=OAAIC_MODELS, value=OAAIC_MODELS[0]) | |
open_chatbot = gr.Chatbot().style(height=400) | |
with gr.Row(): | |
open_message = gr.Textbox( | |
label="What do you want to chat about?", | |
placeholder="Ask me anything.", | |
lines=3, | |
) | |
with gr.Row(): | |
open_submit = gr.Button(value="Send message", variant="secondary").style(full_width=True) | |
open_roleplay = gr.Button(value="Roleplay", variant="secondary").style(full_width=True) | |
open_clear = gr.Button(value="New topic", variant="secondary").style(full_width=False) | |
open_stop = gr.Button(value="Stop", variant="secondary").style(full_width=False) | |
with gr.Row(): | |
with gr.Column(): | |
open_max_tokens = gr.Slider(20, 1000, label="Max Tokens", step=20, value=300) | |
open_temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=0.8) | |
open_top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95) | |
open_top_k = gr.Slider(0, 100, label="Top K", step=1, value=40) | |
open_repetition_penalty = gr.Slider(0.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1) | |
open_system_msg = gr.Textbox( | |
start_message, label="System Message", interactive=True, visible=True, placeholder="system prompt, useful for RP", lines=5) | |
open_nudge_msg = gr.Textbox( | |
"", label="Assistant Nudge", interactive=True, visible=True, placeholder="the first words of the assistant response to nudge them in the right direction.", lines=1) | |
open_chat_history_state = gr.State() | |
open_clear.click(open_clear_chat, inputs=[open_chat_history_state, open_message, open_nudge_msg], outputs=[open_chat_history_state, open_message, open_nudge_msg], queue=False) | |
open_clear.click(lambda: None, None, open_chatbot, queue=False) | |
open_submit_click_event = open_submit.click( | |
fn=open_user, inputs=[open_message, open_nudge_msg, open_chat_history_state], outputs=[open_message, open_nudge_msg, open_chat_history_state], queue=True | |
).then( | |
fn=open_chat, inputs=[open_model_choice, open_chat_history_state, open_system_msg, open_max_tokens, open_temperature, open_top_p, open_top_k, open_repetition_penalty], outputs=[open_chatbot, open_chat_history_state, open_message], queue=True | |
) | |
open_roleplay_click_event = open_roleplay.click( | |
fn=open_user, inputs=[open_message, open_nudge_msg, open_chat_history_state], outputs=[open_message, open_nudge_msg, open_chat_history_state], queue=True | |
).then( | |
fn=open_rp_chat, inputs=[open_model_choice, open_chat_history_state, open_system_msg, open_max_tokens, open_temperature, open_top_p, open_top_k, open_repetition_penalty], outputs=[open_chatbot, open_chat_history_state, open_message], queue=True | |
) | |
open_stop.click(fn=None, inputs=None, outputs=None, cancels=[open_submit_click_event, open_roleplay_click_event], queue=False) | |
arena.queue(concurrency_count=5, max_size=16).launch(debug=True, server_name="0.0.0.0", server_port=7860) |