taxfree_python
commited on
Commit
·
7d9cce6
1
Parent(s):
178e3c8
Rebuild the project
Browse files- app.py +25 -192
- leaderboard/__init__.py +0 -0
- leaderboard/dataset.py +25 -0
- leaderboard/evaluation.py +8 -0
- leaderboard/submission.py +32 -0
- pyproject.toml +18 -1
app.py
CHANGED
@@ -1,204 +1,37 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
-
import pandas as pd
|
4 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
-
from huggingface_hub import snapshot_download
|
6 |
|
7 |
-
from
|
8 |
-
|
9 |
-
CITATION_BUTTON_TEXT,
|
10 |
-
EVALUATION_QUEUE_TEXT,
|
11 |
-
INTRODUCTION_TEXT,
|
12 |
-
LLM_BENCHMARKS_TEXT,
|
13 |
-
TITLE,
|
14 |
-
)
|
15 |
-
from src.display.css_html_js import custom_css
|
16 |
-
from src.display.utils import (
|
17 |
-
BENCHMARK_COLS,
|
18 |
-
COLS,
|
19 |
-
EVAL_COLS,
|
20 |
-
EVAL_TYPES,
|
21 |
-
AutoEvalColumn,
|
22 |
-
ModelType,
|
23 |
-
fields,
|
24 |
-
WeightType,
|
25 |
-
Precision
|
26 |
-
)
|
27 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
28 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
29 |
-
from src.submission.submit import add_new_eval
|
30 |
-
|
31 |
-
|
32 |
-
def restart_space():
|
33 |
-
API.restart_space(repo_id=REPO_ID)
|
34 |
-
|
35 |
-
### Space initialisation
|
36 |
-
try:
|
37 |
-
print(EVAL_REQUESTS_PATH)
|
38 |
-
snapshot_download(
|
39 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
40 |
-
)
|
41 |
-
except Exception:
|
42 |
-
restart_space()
|
43 |
-
try:
|
44 |
-
print(EVAL_RESULTS_PATH)
|
45 |
-
snapshot_download(
|
46 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
47 |
-
)
|
48 |
-
except Exception:
|
49 |
-
restart_space()
|
50 |
-
|
51 |
-
|
52 |
-
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
53 |
|
54 |
-
(
|
55 |
-
finished_eval_queue_df,
|
56 |
-
running_eval_queue_df,
|
57 |
-
pending_eval_queue_df,
|
58 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
return
|
64 |
-
value=dataframe,
|
65 |
-
datatype=[c.type for c in fields(AutoEvalColumn)],
|
66 |
-
select_columns=SelectColumns(
|
67 |
-
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
68 |
-
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
69 |
-
label="Select Columns to Display:",
|
70 |
-
),
|
71 |
-
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
72 |
-
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
73 |
-
filter_columns=[
|
74 |
-
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
75 |
-
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
76 |
-
ColumnFilter(
|
77 |
-
AutoEvalColumn.params.name,
|
78 |
-
type="slider",
|
79 |
-
min=0.01,
|
80 |
-
max=150,
|
81 |
-
label="Select the number of parameters (B)",
|
82 |
-
),
|
83 |
-
ColumnFilter(
|
84 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
85 |
-
),
|
86 |
-
],
|
87 |
-
bool_checkboxgroup_label="Hide models",
|
88 |
-
interactive=False,
|
89 |
-
)
|
90 |
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
-
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
99 |
-
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
100 |
-
|
101 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
102 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
103 |
-
|
104 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
105 |
-
with gr.Column():
|
106 |
-
with gr.Row():
|
107 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
108 |
-
|
109 |
-
with gr.Column():
|
110 |
-
with gr.Accordion(
|
111 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
112 |
-
open=False,
|
113 |
-
):
|
114 |
-
with gr.Row():
|
115 |
-
finished_eval_table = gr.components.Dataframe(
|
116 |
-
value=finished_eval_queue_df,
|
117 |
-
headers=EVAL_COLS,
|
118 |
-
datatype=EVAL_TYPES,
|
119 |
-
row_count=5,
|
120 |
-
)
|
121 |
-
with gr.Accordion(
|
122 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
123 |
-
open=False,
|
124 |
-
):
|
125 |
-
with gr.Row():
|
126 |
-
running_eval_table = gr.components.Dataframe(
|
127 |
-
value=running_eval_queue_df,
|
128 |
-
headers=EVAL_COLS,
|
129 |
-
datatype=EVAL_TYPES,
|
130 |
-
row_count=5,
|
131 |
-
)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
pending_eval_table = gr.components.Dataframe(
|
139 |
-
value=pending_eval_queue_df,
|
140 |
-
headers=EVAL_COLS,
|
141 |
-
datatype=EVAL_TYPES,
|
142 |
-
row_count=5,
|
143 |
-
)
|
144 |
-
with gr.Row():
|
145 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
150 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
151 |
-
model_type = gr.Dropdown(
|
152 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
153 |
-
label="Model type",
|
154 |
-
multiselect=False,
|
155 |
-
value=None,
|
156 |
-
interactive=True,
|
157 |
-
)
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
162 |
-
label="Precision",
|
163 |
-
multiselect=False,
|
164 |
-
value="float16",
|
165 |
-
interactive=True,
|
166 |
-
)
|
167 |
-
weight_type = gr.Dropdown(
|
168 |
-
choices=[i.value.name for i in WeightType],
|
169 |
-
label="Weights type",
|
170 |
-
multiselect=False,
|
171 |
-
value="Original",
|
172 |
-
interactive=True,
|
173 |
-
)
|
174 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
submit_button.click(
|
179 |
-
add_new_eval,
|
180 |
-
[
|
181 |
-
model_name_textbox,
|
182 |
-
base_model_name_textbox,
|
183 |
-
revision_name_textbox,
|
184 |
-
precision,
|
185 |
-
weight_type,
|
186 |
-
model_type,
|
187 |
-
],
|
188 |
-
submission_result,
|
189 |
-
)
|
190 |
|
191 |
-
with gr.
|
192 |
-
|
193 |
-
citation_button = gr.Textbox(
|
194 |
-
value=CITATION_BUTTON_TEXT,
|
195 |
-
label=CITATION_BUTTON_LABEL,
|
196 |
-
lines=20,
|
197 |
-
elem_id="citation-button",
|
198 |
-
show_copy_button=True,
|
199 |
-
)
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
scheduler.start()
|
204 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
from leaderboard.dataset import load_or_initialize_leaderboard
|
4 |
+
from leaderboard.submission import submit_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# リーダーボード表示
|
8 |
+
def display_leaderboard():
|
9 |
+
dataset = load_or_initialize_leaderboard()
|
10 |
+
return dataset.to_pandas()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
+
# Gradio のコンポーネント
|
14 |
+
leaderboard_component = gr.DataFrame(
|
15 |
+
display_leaderboard, headers=["Model Name", "Score", "Rank"], interactive=False, label="Leaderboard"
|
16 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
submit_form = gr.Interface(
|
19 |
+
submit_model,
|
20 |
+
inputs=[gr.Textbox(label="Model Name"), gr.File(label="Model File")],
|
21 |
+
outputs=gr.DataFrame(headers=["Model Name", "Score", "Rank"], interactive=False),
|
22 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# Gradio アプリケーション
|
25 |
+
app = gr.Blocks()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
with app:
|
28 |
+
gr.Markdown("# human_methylation_bench_ver1")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
with gr.Tab("Leaderboard"):
|
31 |
+
leaderboard_component.render()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
with gr.Tab("Submit Model"):
|
34 |
+
submit_form.render()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
if __name__ == "__main__":
|
37 |
+
app.launch()
|
|
|
|
leaderboard/__init__.py
ADDED
File without changes
|
leaderboard/dataset.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import Dataset, load_dataset
|
2 |
+
|
3 |
+
DATASET_PATH = "leaderboard_dataset"
|
4 |
+
|
5 |
+
# 初期データ
|
6 |
+
INITIAL_DATA = {
|
7 |
+
"Model Name": ["Baseline Model"],
|
8 |
+
"Score": [0.8],
|
9 |
+
"Rank": [1],
|
10 |
+
}
|
11 |
+
|
12 |
+
|
13 |
+
# データセットを初期化またはロード
|
14 |
+
def load_or_initialize_leaderboard():
|
15 |
+
try:
|
16 |
+
dataset = Dataset.load_from_disk(DATASET_PATH)
|
17 |
+
except FileNotFoundError:
|
18 |
+
dataset = Dataset.from_dict(INITIAL_DATA)
|
19 |
+
dataset.save_to_disk(DATASET_PATH)
|
20 |
+
return dataset
|
21 |
+
|
22 |
+
|
23 |
+
# データセットを保存
|
24 |
+
def save_leaderboard(dataset):
|
25 |
+
dataset.save_to_disk(DATASET_PATH)
|
leaderboard/evaluation.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ダミーの評価関数
|
2 |
+
def evaluate_model(model_path):
|
3 |
+
"""
|
4 |
+
提出モデルを評価してスコアを返す関数。
|
5 |
+
本番ではモデルをロードしてテストデータに基づくスコアを計算する。
|
6 |
+
"""
|
7 |
+
# TODO: 実際の評価ロジックを実装する
|
8 |
+
return 0.75 # 仮のスコア
|
leaderboard/submission.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import Dataset
|
2 |
+
|
3 |
+
from .dataset import load_or_initialize_leaderboard, save_leaderboard
|
4 |
+
from .evaluation import evaluate_model
|
5 |
+
|
6 |
+
|
7 |
+
def submit_model(model_name, model_file):
|
8 |
+
"""
|
9 |
+
モデルの提出を処理する関数。
|
10 |
+
1. モデルを評価する。
|
11 |
+
2. リーダーボードにデータを追加。
|
12 |
+
3. ランクを計算して保存。
|
13 |
+
"""
|
14 |
+
dataset = load_or_initialize_leaderboard()
|
15 |
+
|
16 |
+
# モデル評価
|
17 |
+
score = evaluate_model(model_file.name)
|
18 |
+
|
19 |
+
# データに新しいモデルを追加
|
20 |
+
new_entry = {"Model Name": model_name, "Score": score}
|
21 |
+
dataset = dataset.add_item(new_entry)
|
22 |
+
|
23 |
+
# ランク付け
|
24 |
+
df = dataset.to_pandas()
|
25 |
+
df = df.sort_values(by="Score", ascending=False).reset_index(drop=True)
|
26 |
+
df["Rank"] = range(1, len(df) + 1)
|
27 |
+
|
28 |
+
# データセットを更新・保存
|
29 |
+
updated_dataset = Dataset.from_pandas(df)
|
30 |
+
save_leaderboard(updated_dataset)
|
31 |
+
|
32 |
+
return df
|
pyproject.toml
CHANGED
@@ -1,3 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
[tool.ruff]
|
2 |
# Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
|
3 |
select = ["E", "F"]
|
@@ -10,4 +27,4 @@ profile = "black"
|
|
10 |
line_length = 119
|
11 |
|
12 |
[tool.black]
|
13 |
-
line-length = 119
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "human-methylation-bench-ver1"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = ""
|
5 |
+
authors = ["Your Name <you@example.com>"]
|
6 |
+
readme = "README.md"
|
7 |
+
|
8 |
+
[tool.poetry.dependencies]
|
9 |
+
python = "^3.12"
|
10 |
+
gradio = "^5.6.0"
|
11 |
+
pandas = "^2.2.3"
|
12 |
+
datasets = "^3.1.0"
|
13 |
+
|
14 |
+
[build-system]
|
15 |
+
requires = ["poetry-core"]
|
16 |
+
build-backend = "poetry.core.masonry.api"
|
17 |
+
|
18 |
[tool.ruff]
|
19 |
# Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
|
20 |
select = ["E", "F"]
|
|
|
27 |
line_length = 119
|
28 |
|
29 |
[tool.black]
|
30 |
+
line-length = 119
|