Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import json | |
import fire | |
import numpy as np | |
from scipy import sparse | |
from sklearn.model_selection import PredefinedSplit, GridSearchCV | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
def _load_split(data_dir, source, split, n=np.inf): | |
path = os.path.join(data_dir, f'{source}.{split}.jsonl') | |
texts = [] | |
for i, line in enumerate(open(path)): | |
if i >= n: | |
break | |
texts.append(json.loads(line)['text']) | |
return texts | |
def load_split(data_dir, source, split, n=np.inf): | |
webtext = _load_split(data_dir, 'webtext', split, n=n//2) | |
gen = _load_split(data_dir, source, split, n=n//2) | |
texts = webtext+gen | |
labels = [0]*len(webtext)+[1]*len(gen) | |
return texts, labels | |
def main(data_dir, log_dir, source='xl-1542M-k40', n_train=500000, n_valid=10000, n_jobs=None, verbose=False): | |
train_texts, train_labels = load_split(data_dir, source, 'train', n=n_train) | |
valid_texts, valid_labels = load_split(data_dir, source, 'valid', n=n_valid) | |
test_texts, test_labels = load_split(data_dir, source, 'test') | |
vect = TfidfVectorizer(ngram_range=(1, 2), min_df=5, max_features=2**21) | |
train_features = vect.fit_transform(train_texts) | |
valid_features = vect.transform(valid_texts) | |
test_features = vect.transform(test_texts) | |
model = LogisticRegression(solver='liblinear') | |
params = {'C': [1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, 16, 32, 64]} | |
split = PredefinedSplit([-1]*n_train+[0]*n_valid) | |
search = GridSearchCV(model, params, cv=split, n_jobs=n_jobs, verbose=verbose, refit=False) | |
search.fit(sparse.vstack([train_features, valid_features]), train_labels+valid_labels) | |
model = model.set_params(**search.best_params_) | |
model.fit(train_features, train_labels) | |
valid_accuracy = model.score(valid_features, valid_labels)*100. | |
test_accuracy = model.score(test_features, test_labels)*100. | |
data = { | |
'source':source, | |
'n_train':n_train, | |
'valid_accuracy':valid_accuracy, | |
'test_accuracy':test_accuracy | |
} | |
print(data) | |
json.dump(data, open(os.path.join(log_dir, f'{source}.json'), 'w')) | |
if __name__ == '__main__': | |
fire.Fire(main) | |