TracyMc's picture
update
4224b43
import gradio as gr
import json
import pandas as pd
from collections import defaultdict
import copy as cp
from urllib.request import urlopen, URLError
import re
from datetime import datetime
import time
# Constants
CITATION_BUTTON_TEXT = r"""@misc{2023opencompass,
title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
author={OpenCompass Contributors},
howpublished = {\url{https://github.com/open-compass/opencompass}},
year={2023}
},
}"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
OPENCOMPASS_README = (
'https://raw.githubusercontent.com/open-compass/opencompass/main/README.md'
)
GITHUB_REPO = 'https://github.com/open-compass/opencompass'
GITHUB_RAW = 'https://raw.githubusercontent.com/open-compass/opencompass'
GITHUB_BLOB = 'https://github.com/open-compass/opencompass/blob'
# Base URL for the JSON data
DATA_URL_BASE = "http://opencompass.oss-cn-shanghai.aliyuncs.com/assets/research-rank/research-data.REALTIME."
def find_latest_data_url():
"""Find the latest available data URL by trying different dates."""
today = datetime.now()
# Try last 365 days
for i in range(365):
date = today.replace(day=today.day - i)
date_str = date.strftime("%Y%m%d")
url = f"{DATA_URL_BASE}{date_str}.json"
try:
urlopen(url)
return url, date_str
except URLError:
continue
# If no valid URL found, return None
return None, None
def get_latest_data():
"""Get latest data URL and update time"""
data_url, update_time = find_latest_data_url()
if not data_url:
raise Exception("Could not find valid data URL")
formatted_update_time = datetime.strptime(update_time, "%Y%m%d").strftime("%Y-%m-%d")
return data_url, formatted_update_time
# Markdown content
def get_leaderboard_title(update_time):
return f"# CompassAcademic Leaderboard (Last Updated: {update_time})"
MAIN_LEADERBOARD_DESCRIPTION = """## Main Evaluation Results
The CompassAcademic currently focuses on the comprehensive reasoning abilities of LLMs.
- The datasets selected so far include General Knowledge Reasoning (MMLU-Pro/GPQA-Diamond), Logical Reasoning (BBH), Mathematical Reasoning (MATH-500, AIME), Code Completion (LiveCodeBench, HumanEval), and Instruction Following (IFEval).
- Currently, the evaluation primarily targets chat models, with updates featuring the latest community models at irregular intervals.
- Prompts and reproduction scripts can be found in [**OpenCompass**: A Toolkit for Evaluation of LLMs](https://github.com/open-compass/opencompass)πŸ†.
"""
def fix_image_urls(content):
"""Fix image URLs in markdown content."""
# Handle the specific logo.svg path
content = content.replace(
'docs/en/_static/image/logo.svg',
'https://raw.githubusercontent.com/open-compass/opencompass/main/docs/en/_static/image/logo.svg',
)
# Replace other relative image paths with absolute GitHub URLs
content = re.sub(
r'!\[[^\]]*\]\((?!http)([^)]+)\)',
lambda m: f'![{m.group(0)}](https://raw.githubusercontent.com/open-compass/opencompass/main/{m.group(1)})',
content,
)
return content
MODEL_SIZE = ['<10B', '10B-70B', '>70B', 'Unknown']
MODEL_TYPE = ['API', 'OpenSource']
def load_data(data_url):
response = urlopen(data_url)
data = json.loads(response.read().decode('utf-8'))
return data
def build_main_table(data):
df = pd.DataFrame(data['globalData']['OverallTable'])
# Add OpenSource column based on models data
models_data = data['models']
df['OpenSource'] = df['model'].apply(
lambda x: 'Yes' if models_data[x]['release'] == 'OpenSource' else 'No'
)
# Add Rank column based on Average Score
df['Rank'] = df['Average'].rank(ascending=False, method='min').astype(int)
columns = {
'Rank': 'Rank',
'model': 'Model',
'org': 'Organization',
'num': 'Parameters',
'OpenSource': 'OpenSource',
'Average': 'Average Score',
'BBH': 'BBH',
'Math-500': 'Math-500',
'AIME': 'AIME',
'MMLU-Pro': 'MMLU-Pro',
'LiveCodeBench': 'LiveCodeBench',
'HumanEval': 'HumanEval',
'GQPA-Diamond': 'GQPA-Diamond',
'IFEval': 'IFEval',
}
df = df[list(columns.keys())].rename(columns=columns)
return df
def filter_table(df, size_ranges, model_types):
filtered_df = df.copy()
# Filter by size
if size_ranges:
def get_size_in_B(param):
if param == 'N/A':
return None
try:
return float(param.replace('B', ''))
except:
return None
filtered_df['size_in_B'] = filtered_df['Parameters'].apply(
get_size_in_B
)
mask = pd.Series(False, index=filtered_df.index)
for size_range in size_ranges:
if size_range == '<10B':
mask |= (filtered_df['size_in_B'] < 10) & (
filtered_df['size_in_B'].notna()
)
elif size_range == '10B-70B':
mask |= (filtered_df['size_in_B'] >= 10) & (
filtered_df['size_in_B'] < 70
)
elif size_range == '>70B':
mask |= filtered_df['size_in_B'] >= 70
elif size_range == 'Unknown':
mask |= filtered_df['size_in_B'].isna()
filtered_df = filtered_df[mask]
filtered_df.drop('size_in_B', axis=1, inplace=True)
# Filter by model type
if model_types:
type_mask = pd.Series(False, index=filtered_df.index)
for model_type in model_types:
if model_type == 'API':
type_mask |= filtered_df['OpenSource'] == 'No'
elif model_type == 'OpenSource':
type_mask |= filtered_df['OpenSource'] == 'Yes'
filtered_df = filtered_df[type_mask]
return filtered_df
def calculate_column_widths(df):
"""Dynamically calculate column widths based on content length."""
column_widths = []
for column in df.columns:
# Get max length of column name and values
header_length = len(str(column))
max_content_length = df[column].astype(str).map(len).max()
# Use the larger of header or content length
# Multiply by average character width (approximately 8 pixels)
# Add padding (20 pixels)
# Increase the multiplier for header length to ensure it fits
width = max(header_length * 10, max_content_length * 8) + 20
# Set minimum width (200 pixels)
width = max(160, width)
# Set maximum width (400 pixels) to prevent extremely wide columns
width = min(400, width)
column_widths.append(width)
return column_widths
def create_interface():
data_url, update_time = get_latest_data()
data = load_data(data_url)
df = build_main_table(data)
title = gr.Markdown(get_leaderboard_title(update_time))
with gr.Blocks() as demo:
title_comp = gr.Markdown(get_leaderboard_title(update_time))
with gr.Tabs() as tabs:
with gr.TabItem("πŸ… Main Leaderboard", elem_id='main'):
gr.Markdown(MAIN_LEADERBOARD_DESCRIPTION)
with gr.Row():
with gr.Column():
size_filter = gr.CheckboxGroup(
choices=MODEL_SIZE,
value=MODEL_SIZE,
label='Model Size',
interactive=True,
)
with gr.Column():
type_filter = gr.CheckboxGroup(
choices=MODEL_TYPE,
value=MODEL_TYPE,
label='Model Type',
interactive=True,
)
with gr.Column():
table = gr.DataFrame(
value=df.sort_values("Average Score", ascending=False),
interactive=False,
wrap=False, # 禁用θ‡ͺ动捒葌
column_widths=calculate_column_widths(df),
)
def update_data():
"""Periodically check for new data and update the interface"""
while True:
time.sleep(300) # Check every 5 minutes
try:
new_data_url, new_update_time = get_latest_data()
if new_data_url != data_url:
new_data = load_data(new_data_url)
new_df = build_main_table(new_data)
filtered_df = filter_table(new_df, size_filter.value, type_filter.value)
title_comp.value = get_leaderboard_title(new_update_time)
table.value = filtered_df.sort_values("Average Score", ascending=False)
except Exception as e:
print(f"Error updating data: {e}")
continue
def update_table(size_ranges, model_types):
filtered_df = filter_table(df, size_ranges, model_types)
return filtered_df.sort_values(
"Average Score", ascending=False
)
size_filter.change(
fn=update_table,
inputs=[size_filter, type_filter],
outputs=table,
)
type_filter.change(
fn=update_table,
inputs=[size_filter, type_filter],
outputs=table,
)
# Set up periodic data update
demo.load(update_data)
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id='citation-button',
)
return demo
if __name__ == '__main__':
demo = create_interface()
demo.launch(server_name='0.0.0.0')