update leaderboard
Browse files- README.md +0 -34
- app.py +165 -192
- gen_table.py +182 -0
- meta_data.py +26 -0
README.md
CHANGED
@@ -9,37 +9,3 @@ pinned: true
|
|
9 |
license: apache-2.0
|
10 |
short_description: A Leaderboard that demonstrates LMM reasoning capabilities
|
11 |
---
|
12 |
-
|
13 |
-
# Start the configuration
|
14 |
-
|
15 |
-
Most of the variables to change for a default leaderboard are in `src/env.py` (replace the path for your leaderboard) and `src/about.py` (for tasks).
|
16 |
-
|
17 |
-
Results files should have the following format and be stored as json files:
|
18 |
-
```json
|
19 |
-
{
|
20 |
-
"config": {
|
21 |
-
"model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
|
22 |
-
"model_name": "path of the model on the hub: org/model",
|
23 |
-
"model_sha": "revision on the hub",
|
24 |
-
},
|
25 |
-
"results": {
|
26 |
-
"task_name": {
|
27 |
-
"metric_name": score,
|
28 |
-
},
|
29 |
-
"task_name2": {
|
30 |
-
"metric_name": score,
|
31 |
-
}
|
32 |
-
}
|
33 |
-
}
|
34 |
-
```
|
35 |
-
|
36 |
-
Request files are created automatically by this tool.
|
37 |
-
|
38 |
-
If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
|
39 |
-
|
40 |
-
# Code logic for more complex edits
|
41 |
-
|
42 |
-
You'll find
|
43 |
-
- the main table' columns names and properties in `src/display/utils.py`
|
44 |
-
- the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
|
45 |
-
- the logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
|
|
|
9 |
license: apache-2.0
|
10 |
short_description: A Leaderboard that demonstrates LMM reasoning capabilities
|
11 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,204 +1,177 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
-
import pandas as pd
|
4 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
-
from huggingface_hub import snapshot_download
|
6 |
-
|
7 |
-
from src.about import (
|
8 |
-
CITATION_BUTTON_LABEL,
|
9 |
-
CITATION_BUTTON_TEXT,
|
10 |
-
EVALUATION_QUEUE_TEXT,
|
11 |
-
INTRODUCTION_TEXT,
|
12 |
-
LLM_BENCHMARKS_TEXT,
|
13 |
-
TITLE,
|
14 |
-
)
|
15 |
-
from src.display.css_html_js import custom_css
|
16 |
-
from src.display.utils import (
|
17 |
-
BENCHMARK_COLS,
|
18 |
-
COLS,
|
19 |
-
EVAL_COLS,
|
20 |
-
EVAL_TYPES,
|
21 |
-
AutoEvalColumn,
|
22 |
-
ModelType,
|
23 |
-
fields,
|
24 |
-
WeightType,
|
25 |
-
Precision
|
26 |
-
)
|
27 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
28 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
29 |
-
from src.submission.submit import add_new_eval
|
30 |
-
|
31 |
-
|
32 |
-
def restart_space():
|
33 |
-
API.restart_space(repo_id=REPO_ID)
|
34 |
-
|
35 |
-
### Space initialisation
|
36 |
-
try:
|
37 |
-
print(EVAL_REQUESTS_PATH)
|
38 |
-
snapshot_download(
|
39 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
40 |
-
)
|
41 |
-
except Exception:
|
42 |
-
restart_space()
|
43 |
-
try:
|
44 |
-
print(EVAL_RESULTS_PATH)
|
45 |
-
snapshot_download(
|
46 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
47 |
-
)
|
48 |
-
except Exception:
|
49 |
-
restart_space()
|
50 |
-
|
51 |
-
|
52 |
-
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
53 |
-
|
54 |
-
(
|
55 |
-
finished_eval_queue_df,
|
56 |
-
running_eval_queue_df,
|
57 |
-
pending_eval_queue_df,
|
58 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
59 |
-
|
60 |
-
def init_leaderboard(dataframe):
|
61 |
-
if dataframe is None or dataframe.empty:
|
62 |
-
raise ValueError("Leaderboard DataFrame is empty or None.")
|
63 |
-
return Leaderboard(
|
64 |
-
value=dataframe,
|
65 |
-
datatype=[c.type for c in fields(AutoEvalColumn)],
|
66 |
-
select_columns=SelectColumns(
|
67 |
-
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
68 |
-
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
69 |
-
label="Select Columns to Display:",
|
70 |
-
),
|
71 |
-
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
72 |
-
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
73 |
-
filter_columns=[
|
74 |
-
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
75 |
-
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
76 |
-
ColumnFilter(
|
77 |
-
AutoEvalColumn.params.name,
|
78 |
-
type="slider",
|
79 |
-
min=0.01,
|
80 |
-
max=150,
|
81 |
-
label="Select the number of parameters (B)",
|
82 |
-
),
|
83 |
-
ColumnFilter(
|
84 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
85 |
-
),
|
86 |
-
],
|
87 |
-
bool_checkboxgroup_label="Hide models",
|
88 |
-
interactive=False,
|
89 |
-
)
|
90 |
-
|
91 |
-
|
92 |
-
demo = gr.Blocks(css=custom_css)
|
93 |
-
with demo:
|
94 |
-
gr.HTML(TITLE)
|
95 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
96 |
-
|
97 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
-
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
99 |
-
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
100 |
-
|
101 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
102 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
103 |
-
|
104 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
105 |
-
with gr.Column():
|
106 |
-
with gr.Row():
|
107 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
108 |
-
|
109 |
-
with gr.Column():
|
110 |
-
with gr.Accordion(
|
111 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
112 |
-
open=False,
|
113 |
-
):
|
114 |
-
with gr.Row():
|
115 |
-
finished_eval_table = gr.components.Dataframe(
|
116 |
-
value=finished_eval_queue_df,
|
117 |
-
headers=EVAL_COLS,
|
118 |
-
datatype=EVAL_TYPES,
|
119 |
-
row_count=5,
|
120 |
-
)
|
121 |
-
with gr.Accordion(
|
122 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
123 |
-
open=False,
|
124 |
-
):
|
125 |
-
with gr.Row():
|
126 |
-
running_eval_table = gr.components.Dataframe(
|
127 |
-
value=running_eval_queue_df,
|
128 |
-
headers=EVAL_COLS,
|
129 |
-
datatype=EVAL_TYPES,
|
130 |
-
row_count=5,
|
131 |
-
)
|
132 |
-
|
133 |
-
with gr.Accordion(
|
134 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
135 |
-
open=False,
|
136 |
-
):
|
137 |
-
with gr.Row():
|
138 |
-
pending_eval_table = gr.components.Dataframe(
|
139 |
-
value=pending_eval_queue_df,
|
140 |
-
headers=EVAL_COLS,
|
141 |
-
datatype=EVAL_TYPES,
|
142 |
-
row_count=5,
|
143 |
-
)
|
144 |
-
with gr.Row():
|
145 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
with gr.Row():
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
with gr.
|
160 |
-
|
161 |
-
choices=
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
interactive=True,
|
166 |
)
|
167 |
-
|
168 |
-
choices=
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
interactive=True,
|
173 |
)
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
with gr.Row():
|
192 |
-
with gr.Accordion(
|
193 |
citation_button = gr.Textbox(
|
194 |
value=CITATION_BUTTON_TEXT,
|
195 |
label=CITATION_BUTTON_LABEL,
|
196 |
-
|
197 |
-
elem_id="citation-button",
|
198 |
-
show_copy_button=True,
|
199 |
-
)
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
scheduler.start()
|
204 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
1 |
+
import abc
|
2 |
+
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
from gen_table import *
|
6 |
+
from meta_data import *
|
7 |
+
|
8 |
+
head_style = """
|
9 |
+
<style>
|
10 |
+
@media (min-width: 1536px)
|
11 |
+
{
|
12 |
+
.gradio-container {
|
13 |
+
min-width: var(--size-full) !important;
|
14 |
+
}
|
15 |
+
}
|
16 |
+
</style>
|
17 |
+
"""
|
18 |
+
|
19 |
+
with gr.Blocks(title="Math Leaderboard", head=head_style) as demo:
|
20 |
+
results = load_results()['results']
|
21 |
+
N_MODEL = len(results)
|
22 |
+
DATASETS = []
|
23 |
+
for m in results:
|
24 |
+
DATASETS.extend(results[m].keys())
|
25 |
+
DATASETS = [d for d in set(DATASETS) if d != 'META']
|
26 |
+
|
27 |
+
|
28 |
+
N_DATA = len(DATASETS)
|
29 |
+
structs = [abc.abstractproperty() for _ in range(N_DATA)]
|
30 |
+
|
31 |
+
gr.Markdown(LEADERBORAD_INTRODUCTION)
|
32 |
+
|
33 |
+
with gr.Tabs(elem_classes='tab-buttons') as tabs:
|
34 |
+
with gr.TabItem('🏅 LMM Math Leaderboard', elem_id='main', id=0):
|
35 |
+
_, check_box = BUILD_L1_DF(results)
|
36 |
+
|
37 |
+
table = generate_table(results)
|
38 |
+
table['Rank'] = list(range(1, len(table) + 1))
|
39 |
+
|
40 |
+
type_map = check_box['type_map']
|
41 |
+
type_map['Rank'] = 'number'
|
42 |
+
|
43 |
+
checkbox_group = gr.CheckboxGroup(
|
44 |
+
choices=check_box['all'],
|
45 |
+
value=check_box['required'],
|
46 |
+
label='Evaluation Dimension',
|
47 |
+
interactive=True,
|
48 |
+
)
|
49 |
+
|
50 |
+
headers = ['Rank'] + check_box['essential'] + checkbox_group.value
|
51 |
with gr.Row():
|
52 |
+
model_size = gr.CheckboxGroup(
|
53 |
+
choices=MODEL_SIZE,
|
54 |
+
value=MODEL_SIZE,
|
55 |
+
label='Model Size',
|
56 |
+
interactive=True
|
57 |
+
)
|
58 |
+
model_type = gr.CheckboxGroup(
|
59 |
+
choices=MODEL_TYPE,
|
60 |
+
value=MODEL_TYPE,
|
61 |
+
label='Model Type',
|
62 |
+
interactive=True
|
63 |
+
)
|
64 |
+
data_component = gr.components.DataFrame(
|
65 |
+
value=table[headers],
|
66 |
+
type='pandas',
|
67 |
+
datatype=[type_map[x] for x in headers],
|
68 |
+
interactive=False,
|
69 |
+
visible=True)
|
70 |
+
|
71 |
+
def filter_df(fields, model_size, model_type):
|
72 |
+
results = load_results()['results']
|
73 |
+
headers = ['Rank'] + check_box['essential'] + fields
|
74 |
+
|
75 |
+
df = generate_table(results)
|
76 |
+
|
77 |
+
df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']]
|
78 |
+
df = df[df['flag']]
|
79 |
+
df.pop('flag')
|
80 |
+
if len(df):
|
81 |
+
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
|
82 |
+
df = df[df['flag']]
|
83 |
+
df.pop('flag')
|
84 |
+
df['Rank'] = list(range(1, len(df) + 1))
|
85 |
+
|
86 |
+
comp = gr.components.DataFrame(
|
87 |
+
value=df[headers],
|
88 |
+
type='pandas',
|
89 |
+
datatype=[type_map[x] for x in headers],
|
90 |
+
interactive=False,
|
91 |
+
visible=True)
|
92 |
+
return comp
|
93 |
+
|
94 |
+
for cbox in [checkbox_group, model_size, model_type]:
|
95 |
+
cbox.change(fn=filter_df, inputs=[checkbox_group, model_size, model_type], outputs=data_component)
|
96 |
+
|
97 |
+
for i, dataset in enumerate(DATASETS):
|
98 |
+
tab_name_map = {
|
99 |
+
'MathVista': 'MathVista (Test Mini)',
|
100 |
+
'MathVerse': 'MathVerse (Vision Only)',
|
101 |
+
}
|
102 |
+
|
103 |
+
with gr.TabItem(
|
104 |
+
f'📊 {dataset if dataset not in tab_name_map else tab_name_map[dataset]}', elem_id=dataset, id=i + 2):
|
105 |
+
|
106 |
+
s = structs[i]
|
107 |
+
s.table, s.check_box = BUILD_L2_DF(results, dataset)
|
108 |
+
s.type_map = s.check_box['type_map']
|
109 |
+
s.type_map['Rank'] = 'number'
|
110 |
+
|
111 |
+
s.checkbox_group = gr.CheckboxGroup(
|
112 |
+
choices=s.check_box['all'],
|
113 |
+
value=s.check_box['required'],
|
114 |
+
label=f'{dataset} CheckBoxes',
|
115 |
+
interactive=True,
|
116 |
+
)
|
117 |
+
s.headers = ['Rank'] + s.check_box['essential'] + s.checkbox_group.value
|
118 |
+
s.table['Rank'] = list(range(1, len(s.table) + 1))
|
119 |
|
120 |
+
with gr.Row():
|
121 |
+
s.model_size = gr.CheckboxGroup(
|
122 |
+
choices=MODEL_SIZE,
|
123 |
+
value=MODEL_SIZE,
|
124 |
+
label='Model Size',
|
125 |
+
interactive=True
|
|
|
126 |
)
|
127 |
+
s.model_type = gr.CheckboxGroup(
|
128 |
+
choices=MODEL_TYPE,
|
129 |
+
value=MODEL_TYPE,
|
130 |
+
label='Model Type',
|
131 |
+
interactive=True
|
|
|
132 |
)
|
133 |
+
s.data_component = gr.components.DataFrame(
|
134 |
+
value=s.table[s.headers],
|
135 |
+
type='pandas',
|
136 |
+
datatype=[s.type_map[x] for x in s.headers],
|
137 |
+
interactive=False,
|
138 |
+
visible=True)
|
139 |
+
s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False)
|
140 |
+
|
141 |
+
def filter_df_l2(dataset_name, fields, model_size, model_type):
|
142 |
+
results = load_results()['results']
|
143 |
+
s = structs[DATASETS.index(dataset_name)]
|
144 |
+
headers = ['Rank'] + s.check_box['essential'] + fields
|
145 |
+
df = cp.deepcopy(s.table)
|
146 |
+
df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']]
|
147 |
+
df = df[df['flag']]
|
148 |
+
df.pop('flag')
|
149 |
+
if len(df):
|
150 |
+
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
|
151 |
+
df = df[df['flag']]
|
152 |
+
df.pop('flag')
|
153 |
+
df['Rank'] = list(range(1, len(df) + 1))
|
154 |
+
|
155 |
+
comp = gr.components.DataFrame(
|
156 |
+
value=df[headers],
|
157 |
+
type='pandas',
|
158 |
+
datatype=[s.type_map[x] for x in headers],
|
159 |
+
interactive=False,
|
160 |
+
visible=True)
|
161 |
+
return comp
|
162 |
+
|
163 |
+
for cbox in [s.checkbox_group, s.model_size, s.model_type]:
|
164 |
+
cbox.change(
|
165 |
+
fn=filter_df_l2,
|
166 |
+
inputs=[s.dataset, s.checkbox_group, s.model_size, s.model_type],
|
167 |
+
outputs=s.data_component)
|
168 |
|
169 |
with gr.Row():
|
170 |
+
with gr.Accordion('Citation', open=False):
|
171 |
citation_button = gr.Textbox(
|
172 |
value=CITATION_BUTTON_TEXT,
|
173 |
label=CITATION_BUTTON_LABEL,
|
174 |
+
elem_id='citation-button')
|
|
|
|
|
|
|
175 |
|
176 |
+
if __name__ == '__main__':
|
177 |
+
demo.launch(server_name='0.0.0.0')
|
|
|
|
gen_table.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy as cp
|
2 |
+
import json
|
3 |
+
from collections import defaultdict
|
4 |
+
from urllib.request import urlopen
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
from meta_data import META_FIELDS, URL, DATASETS_ALL, DATASETS_ESS
|
11 |
+
|
12 |
+
|
13 |
+
def listinstr(lst, s):
|
14 |
+
assert isinstance(lst, list)
|
15 |
+
for item in lst:
|
16 |
+
if item in s:
|
17 |
+
return True
|
18 |
+
return False
|
19 |
+
|
20 |
+
|
21 |
+
def upper_key(k):
|
22 |
+
if k == 'ocr':
|
23 |
+
return 'OCR'
|
24 |
+
elif '_' in k:
|
25 |
+
k = k.split('_')
|
26 |
+
k = [x[0].upper() + x[1:] for x in k]
|
27 |
+
k = ' '.join(k)
|
28 |
+
return k
|
29 |
+
else:
|
30 |
+
return k
|
31 |
+
|
32 |
+
|
33 |
+
def load_results():
|
34 |
+
data = json.loads(urlopen(URL).read())
|
35 |
+
return data
|
36 |
+
|
37 |
+
|
38 |
+
def nth_large(val, vals):
|
39 |
+
return sum([1 for v in vals if v > val]) + 1
|
40 |
+
|
41 |
+
|
42 |
+
def model_size_flag(sz, FIELDS):
|
43 |
+
if pd.isna(sz) and 'Unknown' in FIELDS:
|
44 |
+
return True
|
45 |
+
if pd.isna(sz):
|
46 |
+
return False
|
47 |
+
sz = int(sz)
|
48 |
+
if '<4B' in FIELDS and sz < 4:
|
49 |
+
return True
|
50 |
+
if '4B-10B' in FIELDS and sz >= 4 and sz < 10:
|
51 |
+
return True
|
52 |
+
if '10B-20B' in FIELDS and sz >= 10 and sz < 20:
|
53 |
+
return True
|
54 |
+
if '20B-40B' in FIELDS and sz >= 20 and sz < 40:
|
55 |
+
return True
|
56 |
+
if '>40B' in FIELDS and sz >= 40:
|
57 |
+
return True
|
58 |
+
return False
|
59 |
+
|
60 |
+
|
61 |
+
def model_type_flag(line, FIELDS):
|
62 |
+
if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes':
|
63 |
+
return True
|
64 |
+
if 'API' in FIELDS and line['OpenSource'] == 'No':
|
65 |
+
return True
|
66 |
+
return False
|
67 |
+
|
68 |
+
|
69 |
+
def BUILD_L1_DF(results):
|
70 |
+
check_box = {}
|
71 |
+
check_box['essential'] = ['Method', 'Org', 'Param (B)', 'Language Model', 'Vision Model']
|
72 |
+
# revise there to set default dataset
|
73 |
+
check_box['required'] = ['Overall'] + DATASETS_ESS
|
74 |
+
check_box['all'] = ['Overall'] + DATASETS_ALL
|
75 |
+
type_map = defaultdict(lambda: 'number')
|
76 |
+
type_map['Method'] = 'html'
|
77 |
+
type_map['Language Model'] = type_map['Vision Model'] = type_map['Org'] = 'html'
|
78 |
+
type_map['OpenSource'] = type_map['Verified'] = 'str'
|
79 |
+
check_box['type_map'] = type_map
|
80 |
+
|
81 |
+
df = generate_table(results)
|
82 |
+
return df, check_box
|
83 |
+
|
84 |
+
|
85 |
+
def BUILD_L2_DF(results, dataset):
|
86 |
+
res = defaultdict(list)
|
87 |
+
sub = [v for v in results.values() if dataset in v]
|
88 |
+
assert len(sub), dataset
|
89 |
+
fields = list(sub[0][dataset].keys())
|
90 |
+
|
91 |
+
non_overall_fields = [x for x in fields if 'Overall' not in x]
|
92 |
+
overall_fields = [x for x in fields if 'Overall' in x]
|
93 |
+
|
94 |
+
for m in results:
|
95 |
+
item = results[m]
|
96 |
+
if dataset not in item:
|
97 |
+
continue
|
98 |
+
for k in META_FIELDS:
|
99 |
+
if k == 'Param (B)':
|
100 |
+
param = item['META']['Parameters']
|
101 |
+
res[k].append(float(param.replace('B', '')) if param != '' else None)
|
102 |
+
elif k == 'Method':
|
103 |
+
name, url = item['META']['Method']
|
104 |
+
res[k].append(f'<a href="{url}">{name}</a>')
|
105 |
+
else:
|
106 |
+
s = item['META'][k].replace('\n', '<br>')
|
107 |
+
s = s.replace(' & ', '<br>')
|
108 |
+
res[k].append(s)
|
109 |
+
|
110 |
+
for d in overall_fields:
|
111 |
+
res[d].append(float(item[dataset][d]))
|
112 |
+
for d in non_overall_fields:
|
113 |
+
res[d].append(float(item[dataset][d]))
|
114 |
+
|
115 |
+
df = pd.DataFrame(res)
|
116 |
+
all_fields = overall_fields + non_overall_fields
|
117 |
+
# Use the first 5 non-overall fields as required fields
|
118 |
+
required_fields = overall_fields if len(overall_fields) else non_overall_fields[:5]
|
119 |
+
|
120 |
+
df = df.sort_values('Overall')
|
121 |
+
df = df.iloc[::-1]
|
122 |
+
|
123 |
+
check_box = {}
|
124 |
+
check_box['essential'] = ['Method', 'Org', 'Param (B)', 'Language Model', 'Vision Model']
|
125 |
+
check_box['required'] = required_fields
|
126 |
+
check_box['all'] = all_fields
|
127 |
+
type_map = defaultdict(lambda: 'number')
|
128 |
+
type_map['Method'] = 'html'
|
129 |
+
type_map['Language Model'] = type_map['Vision Model'] = type_map['Org'] = 'html'
|
130 |
+
type_map['OpenSource'] = type_map['Verified'] = 'str'
|
131 |
+
check_box['type_map'] = type_map
|
132 |
+
return df, check_box
|
133 |
+
|
134 |
+
|
135 |
+
def generate_table(results):
|
136 |
+
|
137 |
+
res = defaultdict(list)
|
138 |
+
for i, m in enumerate(results):
|
139 |
+
item = results[m]
|
140 |
+
avg = 0
|
141 |
+
for k in META_FIELDS:
|
142 |
+
if k == 'Param (B)':
|
143 |
+
param = item['META']['Parameters']
|
144 |
+
res[k].append(float(param.replace('B', '')) if param != '' else None)
|
145 |
+
elif k == 'Method':
|
146 |
+
name, url = item['META']['Method']
|
147 |
+
res[k].append(f'<a href="{url}">{name}</a>')
|
148 |
+
else:
|
149 |
+
s = item['META'][k].replace('\n', '<br>')
|
150 |
+
s = s.replace(' & ', '<br>')
|
151 |
+
res[k].append(s)
|
152 |
+
|
153 |
+
|
154 |
+
for d in DATASETS_ALL:
|
155 |
+
key_name = 'Overall'
|
156 |
+
if d in item:
|
157 |
+
val = float(item[d][key_name])
|
158 |
+
val = float(f'{val:.1f}')
|
159 |
+
res[d].append(val)
|
160 |
+
else:
|
161 |
+
res[d].append(None)
|
162 |
+
if d in DATASETS_ESS:
|
163 |
+
if d in item and avg is not None:
|
164 |
+
avg += res[d][-1]
|
165 |
+
else:
|
166 |
+
avg = None
|
167 |
+
|
168 |
+
if avg is not None:
|
169 |
+
avg = float(f'{avg / len(DATASETS_ESS):.1f}')
|
170 |
+
|
171 |
+
res['Overall'].append(avg)
|
172 |
+
|
173 |
+
df = pd.DataFrame(res)
|
174 |
+
overall_isna = df[pd.isna(df['Overall'])]
|
175 |
+
overall_notna = df[~pd.isna(df['Overall'])]
|
176 |
+
overall_notna = overall_notna.sort_values('Overall')
|
177 |
+
overall_notna = overall_notna.iloc[::-1]
|
178 |
+
overall_isna = overall_isna.sort_values('MathVista')
|
179 |
+
overall_isna = overall_isna.iloc[::-1]
|
180 |
+
df = pd.concat([overall_notna, overall_isna])
|
181 |
+
|
182 |
+
return df
|
meta_data.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CONSTANTS-URL
|
2 |
+
URL = "http://opencompass.openxlab.space/assets/MathLB.json"
|
3 |
+
# CONSTANTS-CITATION
|
4 |
+
CITATION_BUTTON_TEXT = r"""\
|
5 |
+
@inproceedings{duan2024vlmevalkit,
|
6 |
+
title={Vlmevalkit: An open-source toolkit for evaluating large multi-modality models},
|
7 |
+
author={Duan, Haodong and Yang, Junming and Qiao, Yuxuan and Fang, Xinyu and Chen, Lin and Liu, Yuan and Dong, Xiaoyi and Zang, Yuhang and Zhang, Pan and Wang, Jiaqi and others},
|
8 |
+
booktitle={Proceedings of the 32nd ACM International Conference on Multimedia},
|
9 |
+
pages={11198--11201},
|
10 |
+
year={2024}
|
11 |
+
}
|
12 |
+
"""
|
13 |
+
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
14 |
+
# CONSTANTS-TEXT
|
15 |
+
LEADERBORAD_INTRODUCTION = """# Open LMM Reasoning Leaderboard
|
16 |
+
|
17 |
+
This leaderboard aims at providing a comprehensive evaluation of the reasoning capabilities of LMMs. \
|
18 |
+
Currently, it is a collection of evaluation results on multiple multi-modal mathematical reasoning benchmarks.
|
19 |
+
"""
|
20 |
+
|
21 |
+
# CONSTANTS-FIELDS
|
22 |
+
DATASETS_ALL = ['MathVista', 'MathVision', 'MathVerse', 'DynaMath', 'MMMath', 'OlympiadBench']
|
23 |
+
DATASETS_ESS = ['MathVista', 'MathVision', 'MathVerse', 'DynaMath']
|
24 |
+
META_FIELDS = ['Method', 'Param (B)', 'Language Model', 'Vision Model', 'OpenSource', 'Verified', 'Org']
|
25 |
+
MODEL_SIZE = ['<4B', '4B-10B', '10B-20B', '20B-40B', '>40B', 'Unknown']
|
26 |
+
MODEL_TYPE = ['OpenSource', 'API']
|