Upload 4 files
Browse files- Dockerfile +5 -0
- README.md +13 -8
- app.py +296 -0
- pyproject.toml +13 -0
Dockerfile
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM bigcodebench/bigcodebench-gradio:latest
|
2 |
+
COPY . /app
|
3 |
+
EXPOSE 7860
|
4 |
+
ENV GRADIO_SERVER_NAME="0.0.0.0"
|
5 |
+
CMD ["python", "app.py"]
|
README.md
CHANGED
@@ -1,12 +1,17 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk:
|
7 |
-
sdk_version: 5.20.0
|
8 |
app_file: app.py
|
|
|
9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: BigCodeBench Evaluator
|
3 |
+
emoji: 🥇
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: docker
|
|
|
7 |
app_file: app.py
|
8 |
+
disable_embedding: true
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
tags:
|
12 |
+
- leaderboard
|
13 |
+
- eval:code
|
14 |
+
- test:public
|
15 |
+
- judge:auto
|
16 |
---
|
17 |
+
Paper:arxiv.org/abs/2406.15877
|
|
app.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import multiprocessing
|
5 |
+
import os
|
6 |
+
import pickle
|
7 |
+
import threading
|
8 |
+
import time
|
9 |
+
from collections import Counter, defaultdict
|
10 |
+
from concurrent.futures import ProcessPoolExecutor, as_completed, wait, FIRST_COMPLETED
|
11 |
+
from datetime import datetime
|
12 |
+
from typing import Any, Dict, List, Tuple
|
13 |
+
from warnings import warn
|
14 |
+
import gc
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
from huggingface_hub import HfApi
|
18 |
+
from bigcodebench.data import get_bigcodebench, get_bigcodebench_hash, load_solutions
|
19 |
+
from bigcodebench.data.utils import CACHE_DIR
|
20 |
+
from bigcodebench.eval import PASS, compatible_eval_result, estimate_pass_at_k, untrusted_check
|
21 |
+
from bigcodebench.gen.util import trusted_check
|
22 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
23 |
+
|
24 |
+
REPO_ID = "bigcode/bigcodebench-evaluator"
|
25 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
26 |
+
API = HfApi(token=HF_TOKEN)
|
27 |
+
Result = Tuple[str, List[bool]]
|
28 |
+
|
29 |
+
|
30 |
+
def get_groundtruth(n_workers, problems, hashcode, check_gt_only, max_as_limit, max_data_limit, max_stack_limit, min_time_limit):
|
31 |
+
cache_file = os.path.join(CACHE_DIR, f"{hashcode}.pkl")
|
32 |
+
if os.path.exists(cache_file):
|
33 |
+
with open(cache_file, "rb") as f:
|
34 |
+
return pickle.load(f)
|
35 |
+
|
36 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
37 |
+
tbegin = time.time()
|
38 |
+
|
39 |
+
with ProcessPoolExecutor(max_workers=n_workers) as executor:
|
40 |
+
futures = []
|
41 |
+
n_samples = 0
|
42 |
+
expected_time = dict()
|
43 |
+
|
44 |
+
for problem in problems.values():
|
45 |
+
args = (
|
46 |
+
problem["complete_prompt"] + "\n" + problem["canonical_solution"],
|
47 |
+
problem["test"],
|
48 |
+
problem["task_id"],
|
49 |
+
max_as_limit,
|
50 |
+
max_data_limit,
|
51 |
+
max_stack_limit,
|
52 |
+
min_time_limit,
|
53 |
+
)
|
54 |
+
|
55 |
+
futures.append(executor.submit(trusted_check, *args))
|
56 |
+
n_samples += 1
|
57 |
+
|
58 |
+
for future in as_completed(futures):
|
59 |
+
result = future.result()
|
60 |
+
expected_time[result["task_id"]] = result["time"]
|
61 |
+
|
62 |
+
if any(expected_time.values()):
|
63 |
+
with open(cache_file, "wb") as f:
|
64 |
+
pickle.dump(expected_time, f)
|
65 |
+
|
66 |
+
return expected_time
|
67 |
+
|
68 |
+
|
69 |
+
def check_correctness(
|
70 |
+
completion_id: int,
|
71 |
+
problem: Dict[str, Any],
|
72 |
+
solution: str,
|
73 |
+
max_as_limit: float,
|
74 |
+
max_data_limit: float,
|
75 |
+
max_stack_limit: float,
|
76 |
+
identifier=None,
|
77 |
+
min_time_limit: float = 0.1,
|
78 |
+
gt_time_limit: float = 2.0,
|
79 |
+
) -> Dict[str, Result]:
|
80 |
+
ret = {
|
81 |
+
"completion_id": completion_id,
|
82 |
+
"task_id": problem["task_id"],
|
83 |
+
"_identifier": identifier,
|
84 |
+
"solution": solution,
|
85 |
+
}
|
86 |
+
ret["base"] = untrusted_check(
|
87 |
+
solution,
|
88 |
+
problem["test"],
|
89 |
+
problem["entry_point"],
|
90 |
+
max_as_limit,
|
91 |
+
max_data_limit,
|
92 |
+
max_stack_limit,
|
93 |
+
min_time_limit,
|
94 |
+
gt_time_limit,
|
95 |
+
)
|
96 |
+
return ret
|
97 |
+
|
98 |
+
|
99 |
+
def evaluate(
|
100 |
+
split: str,
|
101 |
+
subset: str,
|
102 |
+
samples: str,
|
103 |
+
pass_k: str="1,5,10",
|
104 |
+
parallel: int = -1,
|
105 |
+
min_time_limit: float = 1,
|
106 |
+
max_as_limit: int = 30 * 1024,
|
107 |
+
max_data_limit: int = 30 * 1024,
|
108 |
+
max_stack_limit: int = 10,
|
109 |
+
calibrated: bool = True,
|
110 |
+
check_gt_only: bool = False,
|
111 |
+
no_gt: bool = False,
|
112 |
+
selective_evaluate: str = "",
|
113 |
+
):
|
114 |
+
passk = [int(k.strip()) for k in pass_k.split(',') if k.strip().isdigit()]
|
115 |
+
if parallel < 1:
|
116 |
+
n_workers = max(1, multiprocessing.cpu_count() // 2)
|
117 |
+
else:
|
118 |
+
n_workers = parallel
|
119 |
+
|
120 |
+
if check_gt_only:
|
121 |
+
samples = "__dummy__.jsonl"
|
122 |
+
|
123 |
+
extra = subset + "_" if subset != "full" else ""
|
124 |
+
|
125 |
+
problems = get_bigcodebench(subset=subset)
|
126 |
+
|
127 |
+
# Add selective evaluation logic
|
128 |
+
if selective_evaluate:
|
129 |
+
selected_ids = ["BigCodeBench/" + id for id in sorted(set(selective_evaluate.split(",")))]
|
130 |
+
problems = {k: v for k, v in problems.items() if k in selected_ids}
|
131 |
+
if not problems:
|
132 |
+
raise ValueError(f"None of the provided task IDs {selected_ids} were found in the dataset")
|
133 |
+
|
134 |
+
dataset_hash = get_bigcodebench_hash(subset=subset)
|
135 |
+
|
136 |
+
if not no_gt:
|
137 |
+
expected_time = get_groundtruth(n_workers, problems, dataset_hash, check_gt_only, max_as_limit, max_data_limit, max_stack_limit, min_time_limit)
|
138 |
+
else:
|
139 |
+
expected_time = {task_id: None for task_id in problems}
|
140 |
+
|
141 |
+
gt_pass_rate = np.mean([1 if v is not None else 0 for k, v in expected_time.items() if k in problems])
|
142 |
+
failed_tasks = [k for k, v in expected_time.items() if v is None and k in problems]
|
143 |
+
|
144 |
+
pass_at_k = dict()
|
145 |
+
results = {
|
146 |
+
"date": datetime.now().strftime("%Y-%m-%d %H:%M"),
|
147 |
+
"eval": {},
|
148 |
+
}
|
149 |
+
|
150 |
+
if not check_gt_only:
|
151 |
+
|
152 |
+
with ProcessPoolExecutor(max_workers=n_workers) as executor:
|
153 |
+
futures = []
|
154 |
+
completion_id = Counter()
|
155 |
+
n_samples = 0
|
156 |
+
eval_results = defaultdict(list) # task_id ->
|
157 |
+
remainings = set()
|
158 |
+
|
159 |
+
for sample in load_solutions(samples):
|
160 |
+
task_id = sample["task_id"]
|
161 |
+
|
162 |
+
if task_id not in problems:
|
163 |
+
continue
|
164 |
+
solution = (
|
165 |
+
sample["solution"]
|
166 |
+
if "solution" in sample
|
167 |
+
else problems[task_id]["complete_prompt"] + sample["completion"]
|
168 |
+
)
|
169 |
+
if calibrated:
|
170 |
+
solution = problems[task_id]["code_prompt"] + "\n pass\n" + solution
|
171 |
+
remainings.add(sample["_identifier"])
|
172 |
+
args = (
|
173 |
+
completion_id[task_id],
|
174 |
+
problems[task_id],
|
175 |
+
solution,
|
176 |
+
max_as_limit,
|
177 |
+
max_data_limit,
|
178 |
+
max_stack_limit,
|
179 |
+
sample["_identifier"],
|
180 |
+
min_time_limit,
|
181 |
+
expected_time[task_id] if expected_time[task_id] else 20
|
182 |
+
)
|
183 |
+
futures.append(executor.submit(check_correctness, *args))
|
184 |
+
completion_id[task_id] += 1
|
185 |
+
n_samples += 1
|
186 |
+
|
187 |
+
assert n_samples == len(remainings), "Missing problems in unfinished"
|
188 |
+
assert len(completion_id) == len(problems), "Missing problems in samples"
|
189 |
+
|
190 |
+
for future in as_completed(futures):
|
191 |
+
result = future.result()
|
192 |
+
remainings.remove(result["_identifier"])
|
193 |
+
eval_results[result["task_id"]].append(result)
|
194 |
+
del future, result
|
195 |
+
gc.collect()
|
196 |
+
|
197 |
+
# sort the results for each problem by completion_id
|
198 |
+
for task_id, task_results in eval_results.items():
|
199 |
+
task_results.sort(key=lambda x: x["completion_id"])
|
200 |
+
results["eval"][task_id] = []
|
201 |
+
for res in task_results:
|
202 |
+
stat, details = res["base"]
|
203 |
+
results["eval"][task_id].append(
|
204 |
+
{
|
205 |
+
"task_id": task_id,
|
206 |
+
"solution": res["solution"],
|
207 |
+
"status": stat,
|
208 |
+
"details": details,
|
209 |
+
}
|
210 |
+
)
|
211 |
+
|
212 |
+
# Calculate pass@k.
|
213 |
+
total = np.array([len(r) for k, r in results["eval"].items() if k in problems])
|
214 |
+
base_correct = []
|
215 |
+
|
216 |
+
for key, res in results["eval"].items():
|
217 |
+
if key not in problems:
|
218 |
+
continue
|
219 |
+
bc = sum([r["status"] == PASS for r in res])
|
220 |
+
base_correct.append(bc)
|
221 |
+
|
222 |
+
base_correct = np.array(base_correct)
|
223 |
+
|
224 |
+
pass_at_k.update({
|
225 |
+
f"pass@{k}": estimate_pass_at_k(total, base_correct, k).mean()
|
226 |
+
for k in passk
|
227 |
+
if total.min() >= k
|
228 |
+
})
|
229 |
+
|
230 |
+
del problems, futures
|
231 |
+
gc.collect()
|
232 |
+
|
233 |
+
pass_at_k["model"] = os.path.basename(samples).split("--bigcodebench-")[0]
|
234 |
+
pass_at_k["split"] = split
|
235 |
+
pass_at_k["subset"] = subset
|
236 |
+
pass_at_k["calibrated"] = calibrated
|
237 |
+
pass_at_k["gt_pass_rate"] = gt_pass_rate
|
238 |
+
pass_at_k["failed_tasks"] = failed_tasks
|
239 |
+
|
240 |
+
return results, pass_at_k
|
241 |
+
|
242 |
+
|
243 |
+
# def run_gradio():
|
244 |
+
interface = gr.Interface(
|
245 |
+
fn=evaluate,
|
246 |
+
inputs=[
|
247 |
+
gr.Dropdown(["complete", "instruct"], label="BigCodeBench Split"),
|
248 |
+
gr.Dropdown(["full", "hard"], label="BigCodeBench Subset"),
|
249 |
+
gr.File(label="Samples Path (.jsonl)"),
|
250 |
+
gr.Textbox(label="Pass k Values (comma-separated)", value="1,5,10"),
|
251 |
+
gr.Slider(-1, multiprocessing.cpu_count(), step=1, label="Parallel Workers", value=-1),
|
252 |
+
gr.Slider(0.1, 10, step=0.1, label="Min Time Limit", value=1),
|
253 |
+
gr.Slider(1, 100 * 1024, step=1024, label="Max AS Limit", value=30 * 1024),
|
254 |
+
gr.Slider(1, 100 * 1024, step=1024, label="Max Data Limit", value=30 * 1024),
|
255 |
+
gr.Slider(1, 100, step=1, label="Max Stack Limit", value=10),
|
256 |
+
gr.Checkbox(label="Calibrated", value=True),
|
257 |
+
gr.Checkbox(label="Check GT Only"),
|
258 |
+
gr.Checkbox(label="No GT"),
|
259 |
+
gr.Textbox(label="Selective Evaluated Task IDs (comma-separated, e.g. '0,1,2')", value=""),
|
260 |
+
],
|
261 |
+
outputs=[
|
262 |
+
gr.JSON(label="Results"),
|
263 |
+
gr.JSON(label="Eval Results"),
|
264 |
+
],
|
265 |
+
# concurrency_limit=None
|
266 |
+
)
|
267 |
+
interface.queue(default_concurrency_limit=None)
|
268 |
+
|
269 |
+
|
270 |
+
def preload_gt():
|
271 |
+
evaluate(split="complete", subset="full", samples="", check_gt_only=True)
|
272 |
+
evaluate(split="complete", subset="hard", samples="", check_gt_only=True)
|
273 |
+
|
274 |
+
|
275 |
+
def restart_space():
|
276 |
+
logging.info(f"Restarting space with repo ID: {REPO_ID}")
|
277 |
+
try:
|
278 |
+
# Now restart the space
|
279 |
+
API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)
|
280 |
+
logging.info("Space restarted successfully.")
|
281 |
+
except Exception as e:
|
282 |
+
logging.error(f"Failed to restart space: {e}")
|
283 |
+
|
284 |
+
|
285 |
+
# if __name__ == "__main__":
|
286 |
+
while True:
|
287 |
+
try:
|
288 |
+
preload_gt()
|
289 |
+
break
|
290 |
+
except:
|
291 |
+
continue
|
292 |
+
|
293 |
+
scheduler = BackgroundScheduler()
|
294 |
+
scheduler.add_job(restart_space, "interval", hours=1) # Restart every 2hs
|
295 |
+
scheduler.start()
|
296 |
+
interface.launch(show_error=True)
|
pyproject.toml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.ruff]
|
2 |
+
# Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
|
3 |
+
select = ["E", "F"]
|
4 |
+
ignore = ["E501"] # line too long (black is taking care of this)
|
5 |
+
line-length = 119
|
6 |
+
fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
|
7 |
+
|
8 |
+
[tool.isort]
|
9 |
+
profile = "black"
|
10 |
+
line_length = 119
|
11 |
+
|
12 |
+
[tool.black]
|
13 |
+
line-length = 119
|