import threading from concurrent.futures import ThreadPoolExecutor, as_completed import pytest from langflow.services.telemetry.opentelemetry import OpenTelemetry fixed_labels = {"flow_id": "this_flow_id", "service": "this", "user": "that"} @pytest.fixture def opentelemetry_instance(): return OpenTelemetry() def test_init(opentelemetry_instance): assert isinstance(opentelemetry_instance, OpenTelemetry) assert len(opentelemetry_instance._metrics) > 1 assert len(opentelemetry_instance._metrics) == len(opentelemetry_instance._metrics_registry) == 2 assert "file_uploads" in opentelemetry_instance._metrics def test_gauge(opentelemetry_instance): opentelemetry_instance.update_gauge("file_uploads", 1024, fixed_labels) def test_gauge_with_counter_method(opentelemetry_instance): with pytest.raises(TypeError, match="Metric 'file_uploads' is not a counter"): opentelemetry_instance.increment_counter(metric_name="file_uploads", value=1, labels=fixed_labels) def test_gauge_with_historgram_method(opentelemetry_instance): with pytest.raises(TypeError, match="Metric 'file_uploads' is not a histogram"): opentelemetry_instance.observe_histogram("file_uploads", 1, fixed_labels) def test_gauge_with_up_down_counter_method(opentelemetry_instance): with pytest.raises(TypeError, match="Metric 'file_uploads' is not an up down counter"): opentelemetry_instance.up_down_counter("file_uploads", 1, labels=fixed_labels) def test_increment_counter(opentelemetry_instance): opentelemetry_instance.increment_counter(metric_name="num_files_uploaded", value=5, labels=fixed_labels) def test_increment_counter_empty_label(opentelemetry_instance): with pytest.raises(ValueError, match="Labels must be provided for the metric"): opentelemetry_instance.increment_counter(metric_name="num_files_uploaded", value=5, labels={}) def test_increment_counter_missing_mandatory_label(opentelemetry_instance): with pytest.raises(ValueError, match="Missing required labels: {'flow_id'}"): opentelemetry_instance.increment_counter(metric_name="num_files_uploaded", value=5, labels={"service": "one"}) def test_increment_counter_unregisted_metric(opentelemetry_instance): with pytest.raises(ValueError, match="Metric 'num_files_uploaded_1' is not registered"): opentelemetry_instance.increment_counter(metric_name="num_files_uploaded_1", value=5, labels=fixed_labels) def test_opentelementry_singleton(opentelemetry_instance): opentelemetry_instance_2 = OpenTelemetry() assert opentelemetry_instance is opentelemetry_instance_2 opentelemetry_instance_3 = OpenTelemetry(prometheus_enabled=False) assert opentelemetry_instance is opentelemetry_instance_3 assert opentelemetry_instance.prometheus_enabled == opentelemetry_instance_3.prometheus_enabled def test_missing_labels(opentelemetry_instance): with pytest.raises(ValueError, match="Labels must be provided for the metric"): opentelemetry_instance.increment_counter(metric_name="num_files_uploaded", labels=None, value=1.0) with pytest.raises(ValueError, match="Labels must be provided for the metric"): opentelemetry_instance.up_down_counter("num_files_uploaded", 1, None) with pytest.raises(ValueError, match="Labels must be provided for the metric"): opentelemetry_instance.update_gauge(metric_name="num_files_uploaded", value=1.0, labels={}) with pytest.raises(ValueError, match="Labels must be provided for the metric"): opentelemetry_instance.observe_histogram("num_files_uploaded", 1, {}) def test_multithreaded_singleton(): def create_instance(): return OpenTelemetry() # Create instances in multiple threads with ThreadPoolExecutor(max_workers=10) as executor: futures = [executor.submit(create_instance) for _ in range(100)] instances = [future.result() for future in as_completed(futures)] # Check that all instances are the same first_instance = instances[0] for instance in instances[1:]: assert instance is first_instance def test_multithreaded_singleton_race_condition(): # This test simulates a potential race condition start_event = threading.Event() def create_instance(): start_event.wait() # Wait for all threads to be ready return OpenTelemetry() # Create instances in multiple threads, all starting at the same time with ThreadPoolExecutor(max_workers=100) as executor: futures = [executor.submit(create_instance) for _ in range(100)] start_event.set() # Start all threads simultaneously instances = [future.result() for future in as_completed(futures)] # Check that all instances are the same first_instance = instances[0] for instance in instances[1:]: assert instance is first_instance