from pathlib import Path import gradio as gr from ultralytics import YOLO from PIL import Image # Load YOLOv8n model MODEL = YOLO('weights/best.pt') IMAGES_PATH = Path("images/") INF_PARAMETERS = { "imgsz": 640, # image size "conf": 0.8, # confidence threshold "max_det": 1 # maximum number of detections } EXAMPLES = [path for path in IMAGES_PATH.iterdir()] # Function to detect objects and crop the image def detect_and_crop(image: Image.Image) -> Image.Image: # Perform object detection results = MODEL.predict(image,**INF_PARAMETERS) result = results[0] for box in result.boxes.xyxy.cpu().numpy(): if len(box) > 0: cropped_image = image.crop(box=box) return cropped_image else: return image # Gradio UI title = "Crop-Detection" description = """## 🍋‍🟩 Automatically crop product pictures! 🍋‍🟩 When contributors use the mobile app, they are asked to take pictures of the product, then to crop it. To assist users during the process, we create a crop-detection model desin to detect the product edges. We fine-tuned Yolov8n on images extracted from the Open Food Facts database. Check the [model repo page](https://huggingface.co/openfoodfacts/crop-detection) for more information. """ # Gradio Interface demo = gr.Interface( fn=detect_and_crop, inputs=gr.Image(type="pil", width=300), outputs=gr.Image(type="pil", width=300), title=title, description=description, allow_flagging="never", examples=EXAMPLES ) # Launch the Gradio app if __name__ == "__main__": demo.launch()