File size: 53,664 Bytes
486004a
c26f143
 
 
e195ac6
 
 
a9e3b8d
c26f143
41d9eba
 
 
 
 
 
 
37fe9d3
98e8fc3
 
 
1474ca0
98e8fc3
f3c2c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41d9eba
 
fa9bc0c
47b7abe
98e8fc3
 
 
 
3852554
41d9eba
 
fa9bc0c
ee428fa
 
cbed34a
ee428fa
 
 
01538a1
ee428fa
1f9317b
ee428fa
 
 
 
 
 
 
 
 
 
cbed34a
 
ee428fa
 
cbed34a
ee428fa
 
cbed34a
 
3852554
04566a7
ee428fa
47b7abe
cbed34a
 
 
 
 
 
 
 
 
 
 
04566a7
ee428fa
 
9a7794b
47b7abe
1f9317b
 
41d9eba
 
 
 
 
 
47b7abe
98e8fc3
cbed34a
 
3510503
 
cbed34a
41d9eba
 
 
 
 
ee428fa
98e8fc3
41d9eba
fa9bc0c
41d9eba
 
 
 
 
cbed34a
41d9eba
 
 
 
 
 
ee428fa
41d9eba
cbed34a
 
 
41d9eba
 
 
 
 
 
 
 
 
 
fa9bc0c
41d9eba
cbed34a
41d9eba
 
 
98e8fc3
 
01538a1
 
cbed34a
 
 
41d9eba
 
 
 
 
 
 
 
 
ee428fa
cbed34a
ee428fa
 
41d9eba
 
 
 
 
fa9bc0c
41d9eba
 
 
 
 
 
 
 
 
9a7794b
98e8fc3
 
 
 
 
 
 
 
 
 
 
cbed34a
98e8fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41d9eba
 
 
98e8fc3
 
 
 
ee428fa
98e8fc3
cbed34a
 
 
98e8fc3
 
 
 
 
 
cbed34a
98e8fc3
cbed34a
98e8fc3
 
 
 
 
 
41d9eba
 
 
 
 
1f9317b
 
1c47457
c26f143
 
98e8fc3
 
c26f143
 
 
486004a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1474ca0
 
 
 
 
 
 
 
c26f143
 
 
5370608
 
1474ca0
cce8fbb
8ffa15c
5370608
1474ca0
 
 
 
 
cce8fbb
 
 
a9e3b8d
5370608
1474ca0
 
 
 
 
 
 
d0bb13d
1474ca0
 
 
d0bb13d
 
cce8fbb
5370608
d0bb13d
 
5370608
d0bb13d
 
 
1474ca0
d0bb13d
1474ca0
 
5370608
d0bb13d
 
 
5370608
1474ca0
 
d0bb13d
 
 
 
cce8fbb
d0bb13d
 
5370608
d0bb13d
 
 
 
 
 
 
5370608
1474ca0
 
 
5370608
d0bb13d
 
 
 
 
 
 
cce8fbb
5370608
 
cce8fbb
5370608
cce8fbb
 
 
d0bb13d
1474ca0
 
cce8fbb
1474ca0
 
 
 
 
 
 
 
 
 
cce8fbb
 
 
 
 
 
 
 
 
d0bb13d
1474ca0
 
 
cce8fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0bb13d
cce8fbb
 
5370608
d0bb13d
1474ca0
 
 
 
 
 
d0bb13d
cce8fbb
 
d0bb13d
62fc2dd
8ffa15c
1474ca0
cce8fbb
 
 
c26f143
5370608
62fc2dd
 
8ffa15c
 
486004a
 
e44e7ed
62fc2dd
 
 
 
 
 
 
fb8428f
e44e7ed
 
62fc2dd
 
e195ac6
 
 
62fc2dd
 
 
 
 
 
 
e44e7ed
62fc2dd
e44e7ed
62fc2dd
 
 
e44e7ed
62fc2dd
e195ac6
e44e7ed
62fc2dd
486004a
 
e195ac6
e44e7ed
e195ac6
 
 
 
 
62fc2dd
e44e7ed
486004a
fb8428f
e195ac6
fb8428f
 
486004a
 
 
c26f143
e44e7ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb8428f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62fc2dd
 
8ffa15c
 
e195ac6
 
e44e7ed
e195ac6
 
62fc2dd
e44e7ed
 
 
 
 
62fc2dd
e195ac6
 
 
 
 
 
 
e44e7ed
 
 
 
 
e195ac6
 
 
 
 
 
 
 
 
 
e44e7ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e195ac6
 
 
62fc2dd
 
 
e195ac6
62fc2dd
8ffa15c
62fc2dd
 
8ffa15c
486004a
62fc2dd
 
 
 
 
 
 
 
 
 
 
 
 
c26f143
62fc2dd
 
 
 
 
 
 
 
e195ac6
c26f143
486004a
e195ac6
47b7abe
 
e195ac6
486004a
ee428fa
 
 
fa9bc0c
5370608
 
 
486004a
fa9bc0c
41d9eba
 
 
 
 
43dde8f
fa9bc0c
43dde8f
cce8fbb
486004a
41d9eba
5370608
 
41d9eba
5370608
486004a
 
 
43dde8f
fa9bc0c
5370608
43dde8f
41d9eba
 
ee428fa
486004a
cce8fbb
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
import gradio as gr
import requests
import pandas as pd
import plotly.graph_objects as go
from datetime import datetime
import os

HF_TOKEN = os.getenv("HF_TOKEN")

target_models = {
    "openfree/flux-lora-korea-palace": "https://huggingface.co/openfree/flux-lora-korea-palace",
    "seawolf2357/hanbok": "https://huggingface.co/seawolf2357/hanbok",
    "LGAI-EXAONE/EXAONE-3.5-32B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-32B-Instruct",
    "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct",
    "LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct",
    "ginipick/flux-lora-eric-cat": "https://huggingface.co/ginipick/flux-lora-eric-cat",
    "seawolf2357/flux-lora-car-rolls-royce": "https://huggingface.co/seawolf2357/flux-lora-car-rolls-royce",
    
    "moreh/Llama-3-Motif-102B-Instruct": "https://huggingface.co/moreh/Llama-3-Motif-102B-Instruct",
    "moreh/Llama-3-Motif-102B": "https://huggingface.co/moreh/Llama-3-Motif-102B",
    "Samsung/TinyClick": "https://huggingface.co/Samsung/TinyClick",
    
    "Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B",
    "AALF/gemma-2-27b-it-SimPO-37K": "https://huggingface.co/AALF/gemma-2-27b-it-SimPO-37K",
    "nbeerbower/mistral-nemo-wissenschaft-12B": "https://huggingface.co/nbeerbower/mistral-nemo-wissenschaft-12B",
    "Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B",
    "princeton-nlp/gemma-2-9b-it-SimPO": "https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO",
    "migtissera/Tess-v2.5-Gemma-2-27B-alpha": "https://huggingface.co/migtissera/Tess-v2.5-Gemma-2-27B-alpha",
    "DeepMount00/Llama-3.1-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3.1-8b-Ita",
    "cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b": "https://huggingface.co/cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b",
    "ai-human-lab/EEVE-Korean_Instruct-10.8B-expo": "https://huggingface.co/ai-human-lab/EEVE-Korean_Instruct-10.8B-expo",
    "VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct",
    "Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B",
    "AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5",
    "mlabonne/Daredevil-8B-abliterated": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated",
    "ENERGY-DRINK-LOVE/eeve_dpo-v3": "https://huggingface.co/ENERGY-DRINK-LOVE/eeve_dpo-v3",
    "migtissera/Trinity-2-Codestral-22B": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B",
    "Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B",
    "mlabonne/Daredevil-8B-abliterated-dpomix": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated-dpomix",
    "yanolja/EEVE-Korean-Instruct-10.8B-v1.0": "https://huggingface.co/yanolja/EEVE-Korean-Instruct-10.8B-v1.0",
    "vicgalle/Configurable-Llama-3.1-8B-Instruct": "https://huggingface.co/vicgalle/Configurable-Llama-3.1-8B-Instruct",
    "T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0",
    "Eurdem/Defne-llama3.1-8B": "https://huggingface.co/Eurdem/Defne-llama3.1-8B",
    "BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B",
    "BAAI/Infinity-Instruct-3M-0625-Llama3-8B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Llama3-8B",
    "T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0",
    "BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B",
    "mightbe/EEVE-10.8B-Multiturn": "https://huggingface.co/mightbe/EEVE-10.8B-Multiturn",
    "hyemijo/omed-llama3.1-8b": "https://huggingface.co/hyemijo/omed-llama3.1-8b",
    "yanolja/Bookworm-10.7B-v0.4-DPO": "https://huggingface.co/yanolja/Bookworm-10.7B-v0.4-DPO",
    "algograp-Inc/algograpV4": "https://huggingface.co/algograp-Inc/algograpV4",
    "lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75",
    "chihoonlee10/T3Q-LLM-MG-DPO-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-DPO-v1.0",
    "vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B": "https://huggingface.co/vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B",
    "RLHFlow/LLaMA3-iterative-DPO-final": "https://huggingface.co/RLHFlow/LLaMA3-iterative-DPO-final",
    "SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx": "https://huggingface.co/SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx",
    "spow12/Ko-Qwen2-7B-Instruct": "https://huggingface.co/spow12/Ko-Qwen2-7B-Instruct",
    "BAAI/Infinity-Instruct-3M-0625-Qwen2-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Qwen2-7B",
    "lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half",
    "T3Q-LLM/T3Q-LLM1-CV-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v2.0",
    "migtissera/Trinity-2-Codestral-22B-v0.2": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B-v0.2",
    "sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval": "https://huggingface.co/sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval",
    "MaziyarPanahi/Llama-3-8B-Instruct-v0.10": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.10",
    "MaziyarPanahi/Llama-3-8B-Instruct-v0.9": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.9",
    "zhengr/MixTAO-7Bx2-MoE-v8.1": "https://huggingface.co/zhengr/MixTAO-7Bx2-MoE-v8.1",
    "TIGER-Lab/MAmmoTH2-8B-Plus": "https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus",
    "OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k": "https://huggingface.co/OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k",
    "haoranxu/Llama-3-Instruct-8B-CPO-SimPO": "https://huggingface.co/haoranxu/Llama-3-Instruct-8B-CPO-SimPO",
    "Weyaxi/Einstein-v7-Qwen2-7B": "https://huggingface.co/Weyaxi/Einstein-v7-Qwen2-7B",
    "DKYoon/kosolar-hermes-test": "https://huggingface.co/DKYoon/kosolar-hermes-test",
    "vilm/Quyen-Pro-v0.1": "https://huggingface.co/vilm/Quyen-Pro-v0.1",
    "chihoonlee10/T3Q-LLM-MG-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-v1.0",
    "lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25",
    "ai-human-lab/EEVE-Korean-10.8B-RAFT": "https://huggingface.co/ai-human-lab/EEVE-Korean-10.8B-RAFT",
    "princeton-nlp/Llama-3-Base-8B-SFT-RDPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-RDPO",
    "MaziyarPanahi/Llama-3-8B-Instruct-v0.8": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.8",
    "chihoonlee10/T3Q-ko-solar-dpo-v7.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v7.0",
    "jondurbin/bagel-8b-v1.0": "https://huggingface.co/jondurbin/bagel-8b-v1.0",
    "DeepMount00/Llama-3-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3-8b-Ita",
    "VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
    "princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2",
    "AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5",
    "princeton-nlp/Llama-3-Base-8B-SFT-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-KTO",
    "maywell/Mini_Synatra_SFT": "https://huggingface.co/maywell/Mini_Synatra_SFT",
    "princeton-nlp/Llama-3-Base-8B-SFT-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-ORPO",
    "princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2",
    "spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat": "https://huggingface.co/spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat",
    "princeton-nlp/Llama-3-Base-8B-SFT-DPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-DPO",
    "princeton-nlp/Llama-3-Instruct-8B-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO",
    "lcw99/llama-3-10b-it-kor-extented-chang": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang",
    "migtissera/Llama-3-8B-Synthia-v3.5": "https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5",
    "megastudyedu/M-SOLAR-10.7B-v1.4-dpo": "https://huggingface.co/megastudyedu/M-SOLAR-10.7B-v1.4-dpo",
    "T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0",
    "maywell/Synatra-10.7B-v0.4": "https://huggingface.co/maywell/Synatra-10.7B-v0.4",
    "nlpai-lab/KULLM3": "https://huggingface.co/nlpai-lab/KULLM3",
    "abacusai/Llama-3-Smaug-8B": "https://huggingface.co/abacusai/Llama-3-Smaug-8B",
    "gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1",
    "BAAI/Infinity-Instruct-3M-0625-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Mistral-7B",
    "openchat/openchat_3.5": "https://huggingface.co/openchat/openchat_3.5",
    "T3Q-LLM/T3Q-LLM1-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-v2.0",
    "T3Q-LLM/T3Q-LLM1-CV-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v1.0",
    "ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1",
    "macadeliccc/Samantha-Qwen-2-7B": "https://huggingface.co/macadeliccc/Samantha-Qwen-2-7B",
    "openchat/openchat-3.5-0106": "https://huggingface.co/openchat/openchat-3.5-0106",
    "NousResearch/Nous-Hermes-2-SOLAR-10.7B": "https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B",
    "UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1",
    "MTSAIR/multi_verse_model": "https://huggingface.co/MTSAIR/multi_verse_model",
    "gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0",
    "VIRNECT/llama-3-Korean-8B": "https://huggingface.co/VIRNECT/llama-3-Korean-8B",
    "ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3": "https://huggingface.co/ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3",
    "SeaLLMs/SeaLLMs-v3-7B-Chat": "https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat",
    "VIRNECT/llama-3-Korean-8B-V2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-V2",
    "MLP-KTLim/llama-3-Korean-Bllossom-8B": "https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B",
    "Magpie-Align/Llama-3-8B-Magpie-Align-v0.3": "https://huggingface.co/Magpie-Align/Llama-3-8B-Magpie-Align-v0.3",
    "cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2": "https://huggingface.co/cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2",
    "SkyOrbis/SKY-Ko-Llama3-8B-lora": "https://huggingface.co/SkyOrbis/SKY-Ko-Llama3-8B-lora",
    "4yo1/llama3-eng-ko-8b-sl5": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl5",
    "kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39": "https://huggingface.co/kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39",
    "ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2",
    "lcw99/llama-3-10b-it-kor-extented-chang-pro8": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang-pro8",
    "BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B",
    "migtissera/Tess-2.0-Llama-3-8B": "https://huggingface.co/migtissera/Tess-2.0-Llama-3-8B",
    "BAAI/Infinity-Instruct-3M-0613-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0613-Mistral-7B",
    "yeonwoo780/cydinfo-llama3-8b-lora-v01": "https://huggingface.co/yeonwoo780/cydinfo-llama3-8b-lora-v01",
    "vicgalle/ConfigurableSOLAR-10.7B": "https://huggingface.co/vicgalle/ConfigurableSOLAR-10.7B",
    "chihoonlee10/T3Q-ko-solar-jo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-jo-v1.0",
    "Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4": "https://huggingface.co/Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4",
    "Edentns/DataVortexS-10.7B-dpo-v1.0": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.0",
    "SJ-Donald/SJ-SOLAR-10.7b-DPO": "https://huggingface.co/SJ-Donald/SJ-SOLAR-10.7b-DPO",
    "lemon-mint/gemma-ko-7b-it-v0.40": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.40",
    "GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3": "https://huggingface.co/GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3",
    "hyeogi/SOLAR-10.7B-v1.5": "https://huggingface.co/hyeogi/SOLAR-10.7B-v1.5",
    "etri-xainlp/llama3-8b-dpo_v1": "https://huggingface.co/etri-xainlp/llama3-8b-dpo_v1",
    "LDCC/LDCC-SOLAR-10.7B": "https://huggingface.co/LDCC/LDCC-SOLAR-10.7B",
    "chlee10/T3Q-Llama3-8B-Inst-sft1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-Inst-sft1.0",
    "lemon-mint/gemma-ko-7b-it-v0.41": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.41",
    "chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0",
    "maywell/Synatra-7B-Instruct-v0.3-pre": "https://huggingface.co/maywell/Synatra-7B-Instruct-v0.3-pre",
    "UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2",
    "hwkwon/S-SOLAR-10.7B-v1.4": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.4",
    "12thD/ko-Llama-3-8B-sft-v0.3": "https://huggingface.co/12thD/ko-Llama-3-8B-sft-v0.3",
    "hkss/hk-SOLAR-10.7B-v1.4": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.4",
    "lookuss/test-llilu": "https://huggingface.co/lookuss/test-llilu",
    "chihoonlee10/T3Q-ko-solar-dpo-v3.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v3.0",
    "chihoonlee10/T3Q-ko-solar-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v1.0",
    "lcw99/llama-3-10b-wiki-240709-f": "https://huggingface.co/lcw99/llama-3-10b-wiki-240709-f",
    "Edentns/DataVortexS-10.7B-v0.4": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.4",
    "princeton-nlp/Llama-3-Instruct-8B-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-KTO",
    "spow12/kosolar_4.1_sft": "https://huggingface.co/spow12/kosolar_4.1_sft",
    "natong19/Qwen2-7B-Instruct-abliterated": "https://huggingface.co/natong19/Qwen2-7B-Instruct-abliterated",
    "megastudyedu/ME-dpo-7B-v1.1": "https://huggingface.co/megastudyedu/ME-dpo-7B-v1.1",
    "01-ai/Yi-1.5-9B-Chat-16K": "https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K",
    "Edentns/DataVortexS-10.7B-dpo-v0.1": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v0.1",
    "Alphacode-AI/AlphaMist7B-slr-v4-slow": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v4-slow",
    "chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0",
    "hwkwon/S-SOLAR-10.7B-v1.1": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.1",
    "DopeorNope/Dear_My_best_Friends-13B": "https://huggingface.co/DopeorNope/Dear_My_best_Friends-13B",
    "GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2": "https://huggingface.co/GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2",
    "PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct": "https://huggingface.co/PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct",
    "vicgalle/ConfigurableHermes-7B": "https://huggingface.co/vicgalle/ConfigurableHermes-7B",
    "maywell/PiVoT-10.7B-Mistral-v0.2": "https://huggingface.co/maywell/PiVoT-10.7B-Mistral-v0.2",
    "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3": "https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3",
    "lemon-mint/gemma-ko-7b-instruct-v0.50": "https://huggingface.co/lemon-mint/gemma-ko-7b-instruct-v0.50",
    "ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT",
    "maywell/PiVoT-0.1-early": "https://huggingface.co/maywell/PiVoT-0.1-early",
    "hwkwon/S-SOLAR-10.7B-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.3",
    "werty1248/Llama-3-Ko-8B-Instruct-AOG": "https://huggingface.co/werty1248/Llama-3-Ko-8B-Instruct-AOG",
    "Alphacode-AI/AlphaMist7B-slr-v2": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v2",
    "maywell/koOpenChat-sft": "https://huggingface.co/maywell/koOpenChat-sft",
    "lemon-mint/gemma-7b-openhermes-v0.80": "https://huggingface.co/lemon-mint/gemma-7b-openhermes-v0.80",
    "VIRNECT/llama-3-Korean-8B-r-v1": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v1",
    "Alphacode-AI/AlphaMist7B-slr-v1": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v1",
    "Loyola/Mistral-7b-ITmodel": "https://huggingface.co/Loyola/Mistral-7b-ITmodel",
    "VIRNECT/llama-3-Korean-8B-r-v2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v2",
    "NLPark/AnFeng_v3.1-Avocet": "https://huggingface.co/NLPark/AnFeng_v3.1-Avocet",
    "maywell/Synatra_TbST11B_EP01": "https://huggingface.co/maywell/Synatra_TbST11B_EP01",
    "GritLM/GritLM-7B-KTO": "https://huggingface.co/GritLM/GritLM-7B-KTO",
    "01-ai/Yi-34B-Chat": "https://huggingface.co/01-ai/Yi-34B-Chat",
    "ValiantLabs/Llama3.1-8B-ShiningValiant2": "https://huggingface.co/ValiantLabs/Llama3.1-8B-ShiningValiant2",
    "princeton-nlp/Llama-3-Base-8B-SFT-CPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-CPO",
    "hyokwan/hkcode_llama3_8b": "https://huggingface.co/hyokwan/hkcode_llama3_8b",
    "UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3",
    "yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0": "https://huggingface.co/yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0",
    "juungwon/Llama-3-cs-LoRA": "https://huggingface.co/juungwon/Llama-3-cs-LoRA",
    "gangyeolkim/llama-3-chat": "https://huggingface.co/gangyeolkim/llama-3-chat",
    "mncai/llama2-13b-dpo-v3": "https://huggingface.co/mncai/llama2-13b-dpo-v3",
    "maywell/Synatra-Zephyr-7B-v0.01": "https://huggingface.co/maywell/Synatra-Zephyr-7B-v0.01",
    "ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT",
    "juungwon/Llama-3-constructionsafety-LoRA": "https://huggingface.co/juungwon/Llama-3-constructionsafety-LoRA",
    "princeton-nlp/Mistral-7B-Base-SFT-SimPO": "https://huggingface.co/princeton-nlp/Mistral-7B-Base-SFT-SimPO",
    "moondriller/solar10B-eugeneparkthebestv2": "https://huggingface.co/moondriller/solar10B-eugeneparkthebestv2",
    "chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0",
    "Edentns/DataVortexS-10.7B-dpo-v1.7": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.7",
    "gamzadole/llama3_instruct_tuning_without_pretraing": "https://huggingface.co/gamzadole/llama3_instruct_tuning_without_pretraing",
    "saltlux/Ko-Llama3-Luxia-8B": "https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B",
    "kimdeokgi/ko-pt-model-test1": "https://huggingface.co/kimdeokgi/ko-pt-model-test1",
    "maywell/Synatra-11B-Testbench-2": "https://huggingface.co/maywell/Synatra-11B-Testbench-2",
    "Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO": "https://huggingface.co/Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO",
    "vicgalle/Configurable-Mistral-7B": "https://huggingface.co/vicgalle/Configurable-Mistral-7B",
    "ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT",
    "beomi/Llama-3-Open-Ko-8B-Instruct-preview": "https://huggingface.co/beomi/Llama-3-Open-Ko-8B-Instruct-preview",
    "Edentns/DataVortexS-10.7B-dpo-v1.3": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.3",
    "spow12/Llama3_ko_4.2_sft": "https://huggingface.co/spow12/Llama3_ko_4.2_sft",
    "maywell/Llama-3-Ko-8B-Instruct": "https://huggingface.co/maywell/Llama-3-Ko-8B-Instruct",
    "T3Q-LLM/T3Q-LLM3-NC-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM3-NC-v1.0",
    "ehartford/dolphin-2.2.1-mistral-7b": "https://huggingface.co/ehartford/dolphin-2.2.1-mistral-7b",
    "hwkwon/S-SOLAR-10.7B-SFT-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-SFT-v1.3",
    "sel303/llama3-instruct-diverce-v2.0": "https://huggingface.co/sel303/llama3-instruct-diverce-v2.0",
    "4yo1/llama3-eng-ko-8b-sl3": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl3",
    "hkss/hk-SOLAR-10.7B-v1.1": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.1",
    "Open-Orca/Mistral-7B-OpenOrca": "https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca",
    "hyokwan/familidata": "https://huggingface.co/hyokwan/familidata",
    "uukuguy/zephyr-7b-alpha-dare-0.85": "https://huggingface.co/uukuguy/zephyr-7b-alpha-dare-0.85",
    "gwonny/nox-solar-10.7b-v4-kolon-all-5": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-5",
    "shleeeee/mistral-ko-tech-science-v1": "https://huggingface.co/shleeeee/mistral-ko-tech-science-v1",
    "Deepnoid/deep-solar-eeve-KorSTS": "https://huggingface.co/Deepnoid/deep-solar-eeve-KorSTS",
    "AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0": "https://huggingface.co/AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0",
    "tlphams/gollm-tendency-45": "https://huggingface.co/tlphams/gollm-tendency-45",
    "realPCH/ko_solra_merge": "https://huggingface.co/realPCH/ko_solra_merge",
    "Cartinoe5930/original-KoRAE-13b": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b",
    "GAI-LLM/Yi-Ko-6B-dpo-v5": "https://huggingface.co/GAI-LLM/Yi-Ko-6B-dpo-v5",
    "Minirecord/Mini_DPO_test02": "https://huggingface.co/Minirecord/Mini_DPO_test02",
    "AIJUUD/juud-Mistral-7B-dpo": "https://huggingface.co/AIJUUD/juud-Mistral-7B-dpo",
    "gwonny/nox-solar-10.7b-v4-kolon-all-10": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-10",
    "jieunhan/TEST_MODEL": "https://huggingface.co/jieunhan/TEST_MODEL",
    "etri-xainlp/kor-llama2-13b-dpo": "https://huggingface.co/etri-xainlp/kor-llama2-13b-dpo",
    "ifuseok/yi-ko-playtus-instruct-v0.2": "https://huggingface.co/ifuseok/yi-ko-playtus-instruct-v0.2",
    "Cartinoe5930/original-KoRAE-13b-3ep": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b-3ep",
    "Trofish/KULLM-RLHF": "https://huggingface.co/Trofish/KULLM-RLHF",
    "wkshin89/Yi-Ko-6B-Instruct-v1.0": "https://huggingface.co/wkshin89/Yi-Ko-6B-Instruct-v1.0",
    "momo/polyglot-ko-12.8b-Chat-QLoRA-Merge": "https://huggingface.co/momo/polyglot-ko-12.8b-Chat-QLoRA-Merge",
    "PracticeLLM/Custom-KoLLM-13B-v5": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v5",
    "BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B",
    "MRAIRR/minillama3_8b_all": "https://huggingface.co/MRAIRR/minillama3_8b_all",
    "failspy/Phi-3-medium-4k-instruct-abliterated-v3": "https://huggingface.co/failspy/Phi-3-medium-4k-instruct-abliterated-v3",
    "DILAB-HYU/koquality-polyglot-12.8b": "https://huggingface.co/DILAB-HYU/koquality-polyglot-12.8b",
    "kyujinpy/Korean-OpenOrca-v3": "https://huggingface.co/kyujinpy/Korean-OpenOrca-v3",
    "4yo1/llama3-eng-ko-8b": "https://huggingface.co/4yo1/llama3-eng-ko-8b",
    "4yo1/llama3-eng-ko-8": "https://huggingface.co/4yo1/llama3-eng-ko-8",
    "4yo1/llama3-eng-ko-8-llama": "https://huggingface.co/4yo1/llama3-eng-ko-8-llama",
    "PracticeLLM/Custom-KoLLM-13B-v2": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v2",
    "kyujinpy/KOR-Orca-Platypus-13B-v2": "https://huggingface.co/kyujinpy/KOR-Orca-Platypus-13B-v2",
    "ghost-x/ghost-7b-alpha": "https://huggingface.co/ghost-x/ghost-7b-alpha",
    "HumanF-MarkrAI/pub-llama-13B-v6": "https://huggingface.co/HumanF-MarkrAI/pub-llama-13B-v6",
    "nlpai-lab/kullm-polyglot-5.8b-v2": "https://huggingface.co/nlpai-lab/kullm-polyglot-5.8b-v2",
    "maywell/Synatra-42dot-1.3B": "https://huggingface.co/maywell/Synatra-42dot-1.3B",
    "yhkim9362/gemma-en-ko-7b-v0.1": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.1",
    "yhkim9362/gemma-en-ko-7b-v0.2": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.2",
    "daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B": "https://huggingface.co/daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B",
    "beomi/Yi-Ko-6B": "https://huggingface.co/beomi/Yi-Ko-6B",
    "jojo0217/ChatSKKU5.8B": "https://huggingface.co/jojo0217/ChatSKKU5.8B",
    "Deepnoid/deep-solar-v2.0.7": "https://huggingface.co/Deepnoid/deep-solar-v2.0.7",
    "01-ai/Yi-1.5-9B": "https://huggingface.co/01-ai/Yi-1.5-9B",
    "PracticeLLM/Custom-KoLLM-13B-v4": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v4",
    "nuebaek/komt_mistral_mss_user_0_max_steps_80": "https://huggingface.co/nuebaek/komt_mistral_mss_user_0_max_steps_80",
    "dltjdgh0928/lsh_finetune_v0.11": "https://huggingface.co/dltjdgh0928/lsh_finetune_v0.11",
    "shleeeee/mistral-7b-wiki": "https://huggingface.co/shleeeee/mistral-7b-wiki",
    "nayohan/polyglot-ko-5.8b-Inst": "https://huggingface.co/nayohan/polyglot-ko-5.8b-Inst",
    "ifuseok/sft-solar-10.7b-v1.1": "https://huggingface.co/ifuseok/sft-solar-10.7b-v1.1",
    "Junmai/KIT-5.8b": "https://huggingface.co/Junmai/KIT-5.8b",
    "heegyu/polyglot-ko-3.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-3.8b-chat",
    "etri-xainlp/polyglot-ko-12.8b-instruct": "https://huggingface.co/etri-xainlp/polyglot-ko-12.8b-instruct",
    "OpenBuddy/openbuddy-mistral2-7b-v20.3-32k": "https://huggingface.co/OpenBuddy/openbuddy-mistral2-7b-v20.3-32k",
    "sh2orc/Llama-3-Korean-8B": "https://huggingface.co/sh2orc/Llama-3-Korean-8B",
    "Deepnoid/deep-solar-eeve-v2.0.0": "https://huggingface.co/Deepnoid/deep-solar-eeve-v2.0.0",
    "Herry443/Mistral-7B-KNUT-ref": "https://huggingface.co/Herry443/Mistral-7B-KNUT-ref",
    "heegyu/polyglot-ko-5.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-5.8b-chat",
    "jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3": "https://huggingface.co/jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3",
    "DILAB-HYU/KoQuality-Polyglot-5.8b": "https://huggingface.co/DILAB-HYU/KoQuality-Polyglot-5.8b",
    "Byungchae/k2s3_test_0000": "https://huggingface.co/Byungchae/k2s3_test_0000",
    "migtissera/Tess-v2.5-Phi-3-medium-128k-14B": "https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B",
    "kyujinpy/Korean-OpenOrca-13B": "https://huggingface.co/kyujinpy/Korean-OpenOrca-13B",
    "kyujinpy/KO-Platypus2-13B": "https://huggingface.co/kyujinpy/KO-Platypus2-13B",
    "jin05102518/Astral-7B-Instruct-v0.01": "https://huggingface.co/jin05102518/Astral-7B-Instruct-v0.01",
    "Byungchae/k2s3_test_0002": "https://huggingface.co/Byungchae/k2s3_test_0002",
    "NousResearch/Nous-Hermes-llama-2-7b": "https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b",
    "kaist-ai/prometheus-13b-v1.0": "https://huggingface.co/kaist-ai/prometheus-13b-v1.0",
    "sel303/llama3-diverce-ver1.0": "https://huggingface.co/sel303/llama3-diverce-ver1.0",
    "NousResearch/Nous-Capybara-7B": "https://huggingface.co/NousResearch/Nous-Capybara-7B",
    "rrw-x2/KoSOLAR-10.7B-DPO-v1.0": "https://huggingface.co/rrw-x2/KoSOLAR-10.7B-DPO-v1.0",
    "Edentns/DataVortexS-10.7B-v0.2": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.2",
    "Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6": "https://huggingface.co/Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6",
    "tlphams/gollm-instruct-all-in-one-v1": "https://huggingface.co/tlphams/gollm-instruct-all-in-one-v1",
    "Edentns/DataVortexTL-1.1B-v0.1": "https://huggingface.co/Edentns/DataVortexTL-1.1B-v0.1",
    "richard-park/llama3-pre1-ds": "https://huggingface.co/richard-park/llama3-pre1-ds",
    "ehartford/samantha-1.1-llama-33b": "https://huggingface.co/ehartford/samantha-1.1-llama-33b",
    "heegyu/LIMA-13b-hf": "https://huggingface.co/heegyu/LIMA-13b-hf",
    "heegyu/42dot_LLM-PLM-1.3B-mt": "https://huggingface.co/heegyu/42dot_LLM-PLM-1.3B-mt",
    "shleeeee/mistral-ko-7b-wiki-neft": "https://huggingface.co/shleeeee/mistral-ko-7b-wiki-neft",
    "EleutherAI/polyglot-ko-1.3b": "https://huggingface.co/EleutherAI/polyglot-ko-1.3b",
    "kyujinpy/Ko-PlatYi-6B-gu": "https://huggingface.co/kyujinpy/Ko-PlatYi-6B-gu",
    "sel303/llama3-diverce-ver1.6": "https://huggingface.co/sel303/llama3-diverce-ver1.6"    
}

def get_models_data(progress=gr.Progress()):
    """๋ชจ๋ธ ๋ฐ์ดํ„ฐ ๊ฐ€์ ธ์˜ค๊ธฐ"""
    def normalize_model_id(model_id):
        """๋ชจ๋ธ ID๋ฅผ ์ •๊ทœํ™”"""
        return model_id.strip().lower()
        
    url = "https://huggingface.co/api/models"
    
    try:
        progress(0, desc="Fetching models data...")
        params = {
            'full': 'true',
            'limit': 3000,  # 3000๊ฐœ๋กœ ์ฆ๊ฐ€
            'sort': 'downloads',
            'direction': -1
        }
        
        headers = {'Accept': 'application/json'}
        
        response = requests.get(url, params=params, headers=headers)
        if response.status_code != 200:
            print(f"API ์š”์ฒญ ์‹คํŒจ: {response.status_code}")
            print(f"Response: {response.text}")
            return create_error_plot(), "<div>๋ชจ๋ธ ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ ธ์˜ค๋Š”๋ฐ ์‹คํŒจํ–ˆ์Šต๋‹ˆ๋‹ค.</div>", pd.DataFrame()
        
        models = response.json()
        
        # ์ „์ฒด ์ˆœ์œ„ ์ •๋ณด ์ €์žฅ (๋‹ค์šด๋กœ๋“œ ์ˆ˜ ๊ธฐ์ค€)
        model_ranks = {}
        model_data = {}  # ๋ชจ๋“  ๋ชจ๋ธ์˜ ์ƒ์„ธ ๋ฐ์ดํ„ฐ ์ €์žฅ
        
        for idx, model in enumerate(models, 1):
            model_id = normalize_model_id(model.get('id', ''))
            model_data[model_id] = {
                'rank': idx,
                'downloads': model.get('downloads', 0),
                'likes': model.get('likes', 0),
                'title': model.get('title', 'No Title')
            }
        
        # target_models ์ค‘ ์ˆœ์œ„๊ถŒ ๋‚ด ๋ชจ๋ธ ํ•„ํ„ฐ๋ง
        filtered_models = []
        for target_id in target_models.keys():
            normalized_target_id = normalize_model_id(target_id)
            if normalized_target_id in model_data:
                model_info = {
                    'id': target_id,
                    'rank': model_data[normalized_target_id]['rank'],
                    'downloads': model_data[normalized_target_id]['downloads'],
                    'likes': model_data[normalized_target_id]['likes'],
                    'title': model_data[normalized_target_id]['title']
                }
                filtered_models.append(model_info)
        
        # ์ˆœ์œ„๋กœ ์ •๋ ฌ
        filtered_models.sort(key=lambda x: x['rank'])
        
        if not filtered_models:
            return create_error_plot(), "<div>์„ ํƒ๋œ ๋ชจ๋ธ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.</div>", pd.DataFrame()
        
        progress(0.3, desc="Creating visualization...")
        
        # ์‹œ๊ฐํ™” ์ƒ์„ฑ
        fig = go.Figure()
        
        # ๋ฐ์ดํ„ฐ ์ค€๋น„
        ids = [model['id'] for model in filtered_models]
        ranks = [model['rank'] for model in filtered_models]
        likes = [model['likes'] for model in filtered_models]
        downloads = [model['downloads'] for model in filtered_models]
        
        # Y์ถ• ๊ฐ’์„ ๋ฐ˜์ „
        y_values = [3001 - r for r in ranks]  # 3000์œผ๋กœ ๋ณ€๊ฒฝ
        
        # ๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ
        fig.add_trace(go.Bar(
            x=ids,
            y=y_values,
            text=[f"Global Rank: {r}<br>Likes: {l:,}<br>Downloads: {d:,}" 
                  for r, l, d in zip(ranks, likes, downloads)],
            textposition='auto',
            marker_color='rgb(158,202,225)',
            opacity=0.8
        ))
        
        fig.update_layout(
            title={
                'text': 'Hugging Face Models Global Download Rankings (Top 3000)',
                'y':0.95,
                'x':0.5,
                'xanchor': 'center',
                'yanchor': 'top'
            },
            xaxis_title='Model ID',
            yaxis_title='Global Rank',
            yaxis=dict(
                ticktext=[str(i) for i in range(1, 3001, 150)],  # ๊ฐ„๊ฒฉ ์กฐ์ •
                tickvals=[3001 - i for i in range(1, 3001, 150)],
                range=[0, 3000]
            ),
            height=800,
            showlegend=False,
            template='plotly_white',
            xaxis_tickangle=-45
        )
        
        progress(0.6, desc="Creating model cards...")
        
        # HTML ์นด๋“œ ์ƒ์„ฑ
        html_content = """
        <div style='padding: 20px; background: #f5f5f5;'>
            <h2 style='color: #2c3e50;'>Models Global Download Rankings (Top 3000)</h2>
            <div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
        """
        
        # ์ˆœ์œ„๊ถŒ ๋‚ด ๋ชจ๋ธ ์นด๋“œ ์ƒ์„ฑ
        for model in filtered_models:
            model_id = model['id']
            rank = model['rank']
            likes = model['likes']
            downloads = model['downloads']
            title = model.get('title', 'No Title')
            
            html_content += f"""
            <div style='
                background: white;
                padding: 20px;
                border-radius: 10px;
                box-shadow: 0 2px 4px rgba(0,0,0,0.1);
                transition: transform 0.2s;
            '>
                <h3 style='color: #34495e;'>Global Rank #{rank} - {model_id}</h3>
                <p style='color: #2c3e50;'>{title}</p>
                <p style='color: #7f8c8d;'>๐Ÿ‘ Likes: {likes:,}</p>
                <p style='color: #7f8c8d;'>โฌ‡๏ธ Downloads: {downloads:,}</p>
                <a href='{target_models[model_id]}' 
                   target='_blank' 
                   style='
                    display: inline-block;
                    padding: 8px 16px;
                    background: #3498db;
                    color: white;
                    text-decoration: none;
                    border-radius: 5px;
                    transition: background 0.3s;
                   '>
                   Visit Model ๐Ÿ”—
                </a>
            </div>
            """
        
        # ์ˆœ์œ„๊ถŒ ๋ฐ– ๋ชจ๋ธ ์นด๋“œ ์ƒ์„ฑ
        for model_id in target_models:
            if model_id not in [m['id'] for m in filtered_models]:
                html_content += f"""
                <div style='
                    background: #f8f9fa;
                    padding: 20px;
                    border-radius: 10px;
                    box-shadow: 0 2px 4px rgba(0,0,0,0.1);
                '>
                    <h3 style='color: #34495e;'>{model_id}</h3>
                    <p style='color: #7f8c8d;'>Not in top 3000 by downloads</p>
                    <a href='{target_models[model_id]}' 
                       target='_blank' 
                       style='
                        display: inline-block;
                        padding: 8px 16px;
                        background: #95a5a6;
                        color: white;
                        text-decoration: none;
                        border-radius: 5px;
                       '>
                       Visit Model ๐Ÿ”—
                    </a>
                </div>
                """
        
        html_content += "</div></div>"
        
        # ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์ƒ์„ฑ
        df_data = []
        # ์ˆœ์œ„๊ถŒ ๋‚ด ๋ชจ๋ธ
        for model in filtered_models:
            df_data.append({
                'Global Rank': model['rank'],
                'Model ID': model['id'],
                'Title': model.get('title', 'No Title'),
                'Likes': f"{model['likes']:,}",
                'Downloads': f"{model['downloads']:,}",
                'URL': target_models[model['id']]
            })
        # ์ˆœ์œ„๊ถŒ ๋ฐ– ๋ชจ๋ธ
        for model_id in target_models:
            if model_id not in [m['id'] for m in filtered_models]:
                df_data.append({
                    'Global Rank': 'Not in top 3000',
                    'Model ID': model_id,
                    'Title': 'N/A',
                    'Likes': 'N/A',
                    'Downloads': 'N/A',
                    'URL': target_models[model_id]
                })
        
        df = pd.DataFrame(df_data)
        
        progress(1.0, desc="Complete!")
        return fig, html_content, df
        
    except Exception as e:
        print(f"Error in get_models_data: {str(e)}")
        return create_error_plot(), f"<div>์—๋Ÿฌ ๋ฐœ์ƒ: {str(e)}</div>", pd.DataFrame()
        
# ๊ด€์‹ฌ ์ŠคํŽ˜์ด์Šค URL ๋ฆฌ์ŠคํŠธ์™€ ์ •๋ณด
target_spaces = {

    "openfree/Korean-Leaderboard": "https://huggingface.co/spaces/openfree/Korean-Leaderboard",
    "ginipick/FLUXllama": "https://huggingface.co/spaces/ginipick/FLUXllama",
    "ginipick/SORA-3D": "https://huggingface.co/spaces/ginipick/SORA-3D",
    "fantaxy/Sound-AI-SFX": "https://huggingface.co/spaces/fantaxy/Sound-AI-SFX",
    "fantos/flx8lora": "https://huggingface.co/spaces/fantos/flx8lora",
    "ginigen/Canvas": "https://huggingface.co/spaces/ginigen/Canvas",
    "fantaxy/erotica": "https://huggingface.co/spaces/fantaxy/erotica",
    "ginipick/time-machine": "https://huggingface.co/spaces/ginipick/time-machine",
    "aiqcamp/FLUX-VisionReply": "https://huggingface.co/spaces/aiqcamp/FLUX-VisionReply",
    "openfree/Tetris-Game": "https://huggingface.co/spaces/openfree/Tetris-Game",
    "openfree/everychat": "https://huggingface.co/spaces/openfree/everychat",
    "VIDraft/mouse1": "https://huggingface.co/spaces/VIDraft/mouse1",
    "kolaslab/alpha-go": "https://huggingface.co/spaces/kolaslab/alpha-go",
    "ginipick/text3d": "https://huggingface.co/spaces/ginipick/text3d",
    "openfree/trending-board": "https://huggingface.co/spaces/openfree/trending-board",
    "cutechicken/tankwar": "https://huggingface.co/spaces/cutechicken/tankwar",
    "openfree/game-jewel": "https://huggingface.co/spaces/openfree/game-jewel",
    "VIDraft/mouse-chat": "https://huggingface.co/spaces/VIDraft/mouse-chat",
    "ginipick/AccDiffusion": "https://huggingface.co/spaces/ginipick/AccDiffusion",
    "aiqtech/Particle-Accelerator-Simulation": "https://huggingface.co/spaces/aiqtech/Particle-Accelerator-Simulation",
    "openfree/GiniGEN": "https://huggingface.co/spaces/openfree/GiniGEN",
    "kolaslab/3DAudio-Spectrum-Analyzer": "https://huggingface.co/spaces/kolaslab/3DAudio-Spectrum-Analyzer",
    "openfree/trending-news-24": "https://huggingface.co/spaces/openfree/trending-news-24",
    "ginipick/Realtime-FLUX": "https://huggingface.co/spaces/ginipick/Realtime-FLUX",
    "VIDraft/prime-number": "https://huggingface.co/spaces/VIDraft/prime-number",
    "kolaslab/zombie-game": "https://huggingface.co/spaces/kolaslab/zombie-game",
    "fantos/miro-game": "https://huggingface.co/spaces/fantos/miro-game",
    "kolaslab/shooting": "https://huggingface.co/spaces/kolaslab/shooting",
    "VIDraft/Mouse-Hackathon": "https://huggingface.co/spaces/VIDraft/Mouse-Hackathon",
    "upstage/open-ko-llm-leaderboard": "https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard",
    "LGAI-EXAONE/EXAONE-3.5-Instruct-Demo": "https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.5-Instruct-Demo",

    "kolaslab/RC4-EnDecoder": "https://huggingface.co/spaces/kolaslab/RC4-EnDecoder",
    "kolaslab/simulator": "https://huggingface.co/spaces/kolaslab/simulator",
    "kolaslab/calculator": "https://huggingface.co/spaces/kolaslab/calculator",
    "etri-vilab/Ko-LLaVA": "https://huggingface.co/spaces/etri-vilab/Ko-LLaVA",
    "etri-vilab/KOALA": "https://huggingface.co/spaces/etri-vilab/KOALA",
    "naver-clova-ix/donut-base-finetuned-cord-v2": "https://huggingface.co/spaces/naver-clova-ix/donut-base-finetuned-cord-v2",    
    
    "NCSOFT/VARCO_Arena": "https://huggingface.co/spaces/NCSOFT/VARCO_Arena"
}

def get_spaces_data(sort_type="trending", progress=gr.Progress()):
    """์ŠคํŽ˜์ด์Šค ๋ฐ์ดํ„ฐ ๊ฐ€์ ธ์˜ค๊ธฐ (trending ๋˜๋Š” modes)"""
    url = "https://huggingface.co/api/spaces"
    
    try:
        progress(0, desc=f"Fetching {sort_type} spaces data...")
        params = {
            'full': 'true',
            'limit': 300
        }
        
        response = requests.get(url, params=params)
        response.raise_for_status()
        all_spaces = response.json()
        
        # ์ˆœ์œ„ ์ •๋ณด ์ €์žฅ
        space_ranks = {}
        for idx, space in enumerate(all_spaces, 1):
            space_id = space.get('id', '')
            if space_id in target_spaces:
                # ์ „์ฒด space ์ •๋ณด ์ €์žฅ
                space['rank'] = idx
                space_ranks[space_id] = space
        
        # target_spaces ์ค‘ ์ˆœ์œ„๊ถŒ ๋‚ด space ํ•„ํ„ฐ๋ง
        spaces = [space_ranks[space_id] for space_id in space_ranks.keys()]
        spaces.sort(key=lambda x: x['rank'])  # ์ˆœ์œ„๋ณ„๋กœ ์ •๋ ฌ
        
        progress(0.3, desc="Creating visualization...")
        
        # ์‹œ๊ฐํ™” ์ƒ์„ฑ
        fig = go.Figure()
        
        # ๋ฐ์ดํ„ฐ ์ค€๋น„
        ids = [space['id'] for space in spaces]
        ranks = [space['rank'] for space in spaces]
        likes = [space.get('likes', 0) for space in spaces]
        titles = [space.get('title', 'No Title') for space in spaces]
        
        # Y์ถ• ๊ฐ’์„ ๋ฐ˜์ „
        y_values = [301 - r for r in ranks]
        
        # ๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ
        fig.add_trace(go.Bar(
            x=ids,
            y=y_values,
            text=[f"Rank: {r}<br>Title: {t}<br>Likes: {l}" 
                  for r, t, l in zip(ranks, titles, likes)],
            textposition='auto',
            marker_color='rgb(158,202,225)',
            opacity=0.8
        ))
        
        fig.update_layout(
            title={
                'text': f'Hugging Face Spaces {sort_type.title()} Rankings (Top 300)',
                'y':0.95,
                'x':0.5,
                'xanchor': 'center',
                'yanchor': 'top'
            },
            xaxis_title='Space ID',
            yaxis_title='Rank',
            yaxis=dict(
                ticktext=[str(i) for i in range(1, 301, 20)],
                tickvals=[301 - i for i in range(1, 301, 20)],
                range=[0, 300]
            ),
            height=800,
            showlegend=False,
            template='plotly_white',
            xaxis_tickangle=-45
        )
        
        progress(0.6, desc="Creating space cards...")
        
        # HTML ์นด๋“œ ์ƒ์„ฑ
        html_content = f"""
        <div style='padding: 20px; background: #f5f5f5;'>
            <h2 style='color: #2c3e50;'>{sort_type.title()} Rankings</h2>
            <div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
        """
        
        for space in spaces:
            space_id = space['id']
            rank = space['rank']
            title = space.get('title', 'No Title')
            likes = space.get('likes', 0)
            description = space.get('description', '')
            
            # cardData์—์„œ ์ถ”๊ฐ€ ์ •๋ณด ๊ฐ€์ ธ์˜ค๊ธฐ
            card_data = space.get('cardData', {})
            if not description and card_data:
                description = card_data.get('description', 'No Description')
            
            # description์ด ๋„ˆ๋ฌด ๊ธธ๋ฉด ์ž๋ฅด๊ธฐ
            short_description = description[:150] + '...' if description and len(description) > 150 else description
            
            html_content += f"""
            <div style='
                background: white;
                padding: 20px;
                border-radius: 10px;
                box-shadow: 0 2px 4px rgba(0,0,0,0.1);
                transition: transform 0.2s;
            '>
                <h3 style='color: #34495e;'>Rank #{rank} - {space_id}</h3>
                <h4 style='color: #2c3e50; margin: 10px 0; font-size: 1.1em;'>{title}</h4>
                <p style='color: #7f8c8d; margin-bottom: 10px;'>๐Ÿ‘ Likes: {likes}</p>
                <p style='color: #7f8c8d; font-size: 0.9em; margin-bottom: 15px; line-height: 1.4;'>{short_description}</p>
                <a href='{target_spaces[space_id]}' 
                   target='_blank' 
                   style='
                    display: inline-block;
                    padding: 8px 16px;
                    background: #3498db;
                    color: white;
                    text-decoration: none;
                    border-radius: 5px;
                    transition: background 0.3s;
                   '>
                   Visit Space ๐Ÿ”—
                </a>
            </div>
            """
        
        html_content += "</div></div>"
        
        # ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์ƒ์„ฑ
        df = pd.DataFrame([{
            'Rank': space['rank'],
            'Space ID': space['id'],
            'Title': space.get('title', 'No Title'),
            'Description': (space.get('description', '') or space.get('cardData', {}).get('description', 'No Description'))[:100] + '...',
            'Likes': space.get('likes', 0),
            'URL': target_spaces[space['id']]
        } for space in spaces])
        
        progress(1.0, desc="Complete!")
        return fig, html_content, df
        
    except Exception as e:
        print(f"Error in get_spaces_data: {str(e)}")
        error_html = f'<div style="color: red; padding: 20px;">Error: {str(e)}</div>'
        error_plot = create_error_plot()
        return error_plot, error_html, pd.DataFrame()


def create_trend_visualization(spaces_data):
    if not spaces_data:
        return create_error_plot()
    
    fig = go.Figure()
    
    # ์ˆœ์œ„ ๋ฐ์ดํ„ฐ ์ค€๋น„
    ranks = []
    for idx, space in enumerate(spaces_data, 1):
        space_id = space.get('id', '')
        if space_id in target_spaces:
            ranks.append({
                'id': space_id,
                'rank': idx,
                'likes': space.get('likes', 0),
                'title': space.get('title', 'N/A'),
                'views': space.get('views', 0)
            })
    
    if not ranks:
        return create_error_plot()
    
    # ์ˆœ์œ„๋ณ„๋กœ ์ •๋ ฌ
    ranks.sort(key=lambda x: x['rank'])
    
    # ํ”Œ๋กฏ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ
    ids = [r['id'] for r in ranks]
    rank_values = [r['rank'] for r in ranks]
    likes = [r['likes'] for r in ranks]
    views = [r['views'] for r in ranks]
    
    # ๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ
    fig.add_trace(go.Bar(
        x=ids,
        y=rank_values,
        text=[f"Rank: {r}<br>Likes: {l}<br>Views: {v}" for r, l, v in zip(rank_values, likes, views)],
        textposition='auto',
        marker_color='rgb(158,202,225)',
        opacity=0.8
    ))
    
    fig.update_layout(
        title={
            'text': 'Current Trending Ranks (All Target Spaces)',
            'y':0.95,
            'x':0.5,
            'xanchor': 'center',
            'yanchor': 'top'
        },
        xaxis_title='Space ID',
        yaxis_title='Trending Rank',
        yaxis_autorange='reversed',
        height=800,
        showlegend=False,
        template='plotly_white',
        xaxis_tickangle=-45
    )
    
    return fig

# ํ† ํฐ์ด ์—†๋Š” ๊ฒฝ์šฐ๋ฅผ ์œ„ํ•œ ๋Œ€์ฒด ํ•จ์ˆ˜
def get_trending_spaces_without_token():
    try:
        url = "https://huggingface.co/api/spaces"
        params = {
            'sort': 'likes',
            'direction': -1,
            'limit': 1000,
            'full': 'true'
        }
        
        response = requests.get(url, params=params)
        
        if response.status_code == 200:
            return response.json()
        else:
            print(f"API ์š”์ฒญ ์‹คํŒจ (ํ† ํฐ ์—†์Œ): {response.status_code}")
            print(f"Response: {response.text}")
            return None
    except Exception as e:
        print(f"API ํ˜ธ์ถœ ์ค‘ ์—๋Ÿฌ ๋ฐœ์ƒ (ํ† ํฐ ์—†์Œ): {str(e)}")
        return None

# API ํ† ํฐ ์„ค์ • ๋ฐ ํ•จ์ˆ˜ ์„ ํƒ
if not HF_TOKEN:
    get_trending_spaces = get_trending_spaces_without_token



def create_error_plot():
    fig = go.Figure()
    fig.add_annotation(
        text="๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.\n(API ์ธ์ฆ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค)",
        xref="paper",
        yref="paper",
        x=0.5,
        y=0.5,
        showarrow=False,
        font=dict(size=20)
    )
    fig.update_layout(
        title="Error Loading Data",
        height=400
    )
    return fig


def create_space_info_html(spaces_data):
    if not spaces_data:
        return "<div style='padding: 20px;'><h2>๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์˜ค๋Š”๋ฐ ์‹คํŒจํ–ˆ์Šต๋‹ˆ๋‹ค.</h2></div>"
    
    html_content = """
    <div style='padding: 20px;'>
    <h2 style='color: #2c3e50;'>Current Trending Rankings</h2>
    <div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
    """
    
    # ๋ชจ๋“  target spaces๋ฅผ ํฌํ•จํ•˜๋„๋ก ์ˆ˜์ •
    for space_id in target_spaces.keys():
        space_info = next((s for s in spaces_data if s.get('id') == space_id), None)
        if space_info:
            rank = next((idx for idx, s in enumerate(spaces_data, 1) if s.get('id') == space_id), 'N/A')
            html_content += f"""
            <div style='
                background: white;
                padding: 20px;
                border-radius: 10px;
                box-shadow: 0 2px 4px rgba(0,0,0,0.1);
                transition: transform 0.2s;
            '>
                <h3 style='color: #34495e;'>#{rank} - {space_id}</h3>
                <p style='color: #7f8c8d;'>๐Ÿ‘ Likes: {space_info.get('likes', 'N/A')}</p>
                <p style='color: #7f8c8d;'>๐Ÿ‘€ Views: {space_info.get('views', 'N/A')}</p>
                <p style='color: #2c3e50;'>{space_info.get('title', 'N/A')}</p>
                <p style='color: #7f8c8d; font-size: 0.9em;'>{space_info.get('description', 'N/A')[:100]}...</p>
                <a href='{target_spaces[space_id]}' 
                   target='_blank' 
                   style='
                    display: inline-block;
                    padding: 8px 16px;
                    background: #3498db;
                    color: white;
                    text-decoration: none;
                    border-radius: 5px;
                    transition: background 0.3s;
                   '>
                   Visit Space ๐Ÿ”—
                </a>
            </div>
            """
        else:
            html_content += f"""
            <div style='
                background: #f8f9fa;
                padding: 20px;
                border-radius: 10px;
                box-shadow: 0 2px 4px rgba(0,0,0,0.1);
            '>
                <h3 style='color: #34495e;'>{space_id}</h3>
                <p style='color: #7f8c8d;'>Not in trending</p>
                <a href='{target_spaces[space_id]}' 
                   target='_blank' 
                   style='
                    display: inline-block;
                    padding: 8px 16px;
                    background: #95a5a6;
                    color: white;
                    text-decoration: none;
                    border-radius: 5px;
                   '>
                   Visit Space ๐Ÿ”—
                </a>
            </div>
            """
    
    html_content += "</div></div>"
    return html_content

def create_data_table(spaces_data):
    if not spaces_data:
        return pd.DataFrame()
    
    rows = []
    for idx, space in enumerate(spaces_data, 1):
        space_id = space.get('id', '')
        if space_id in target_spaces:
            rows.append({
                'Rank': idx,
                'Space ID': space_id,
                'Likes': space.get('likes', 'N/A'),
                'Title': space.get('title', 'N/A'),
                'URL': target_spaces[space_id]
            })
    
    return pd.DataFrame(rows)

def refresh_data():
    spaces_data = get_trending_spaces()
    if spaces_data:
        plot = create_trend_visualization(spaces_data)
        info = create_space_info_html(spaces_data)
        df = create_data_table(spaces_data)
        return plot, info, df
    else:
        return create_error_plot(), "<div>API ์ธ์ฆ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.</div>", pd.DataFrame()

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # ๐Ÿค— ํ—ˆ๊น…ํŽ˜์ด์Šค 'ํ•œ๊ตญ ๋ฆฌ๋”๋ณด๋“œ'
    ์‹ค์‹œ๊ฐ„์œผ๋กœ Hugging Face์˜ Spaces์™€ Models ์ธ๊ธฐ ์ˆœ์œ„๋ฅผ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ์‹ ๊ทœ ๋“ฑ๋ก ์š”์ฒญ: arxivgpt@gmail.com
    """)
    
    # ์ƒˆ๋กœ ๊ณ ์นจ ๋ฒ„ํŠผ์„ ์ƒ๋‹จ์œผ๋กœ ์ด๋™ํ•˜๊ณ  ํ•œ๊ธ€๋กœ ๋ณ€๊ฒฝ
    refresh_btn = gr.Button("๐Ÿ”„ ์ƒˆ๋กœ ๊ณ ์นจ", variant="primary")
    
    with gr.Tab("Spaces Trending"):
        trending_plot = gr.Plot()
        trending_info = gr.HTML()
        trending_df = gr.DataFrame()
    
    with gr.Tab("Models Trending"):
        models_plot = gr.Plot()
        models_info = gr.HTML()
        models_df = gr.DataFrame()
    
    def refresh_all_data():
        spaces_results = get_spaces_data("trending")
        models_results = get_models_data()
        return [*spaces_results, *models_results]
    
    refresh_btn.click(
        refresh_all_data,
        outputs=[
            trending_plot, trending_info, trending_df,
            models_plot, models_info, models_df
        ]
    )
    
    # ์ดˆ๊ธฐ ๋ฐ์ดํ„ฐ ๋กœ๋“œ
    spaces_results = get_spaces_data("trending")
    models_results = get_models_data()
    
    trending_plot.value, trending_info.value, trending_df.value = spaces_results
    models_plot.value, models_info.value, models_df.value = models_results
    
    
# Gradio ์•ฑ ์‹คํ–‰
demo.launch(
    server_name="0.0.0.0",
    server_port=7860,
    share=False
)