Spaces:
Running
Running
File size: 50,053 Bytes
486004a c26f143 e195ac6 a9e3b8d c26f143 41d9eba 37fe9d3 bd3bf25 37fe9d3 41d9eba fa9bc0c 47b7abe b0bbfbb 41d9eba fa9bc0c b0bbfbb 1f9317b b0bbfbb 41d9eba b0bbfbb 41d9eba b0bbfbb 9a7794b 47b7abe 41d9eba 849c3b6 47b7abe b0bbfbb 41d9eba 9a7794b 47b7abe b0bbfbb 1f9317b 41d9eba 47b7abe 9a7794b 41d9eba 9a7794b 41d9eba 9a7794b 41d9eba fa9bc0c 41d9eba 9a7794b 41d9eba 9a7794b 41d9eba fa9bc0c 41d9eba 9a7794b 41d9eba 9a7794b 47b7abe 41d9eba fa9bc0c 41d9eba fa9bc0c 41d9eba fa9bc0c 41d9eba b0bbfbb 41d9eba 9a7794b 41d9eba 9a7794b 41d9eba 1f9317b 1c47457 849c3b6 41d9eba c26f143 486004a c26f143 5370608 cce8fbb 8ffa15c 5370608 cce8fbb a9e3b8d 5370608 d0bb13d cce8fbb 5370608 d0bb13d cce8fbb 5370608 d0bb13d 5370608 d0bb13d 5370608 d0bb13d 5370608 d0bb13d cce8fbb d0bb13d 5370608 d0bb13d 5370608 d0bb13d cce8fbb 5370608 cce8fbb 5370608 cce8fbb d0bb13d cce8fbb d0bb13d cce8fbb d0bb13d cce8fbb d0bb13d cce8fbb 5370608 d0bb13d cce8fbb d0bb13d 62fc2dd 8ffa15c cce8fbb c26f143 5370608 d0bb13d 62fc2dd 8ffa15c 486004a e44e7ed 62fc2dd fb8428f e44e7ed 62fc2dd e195ac6 62fc2dd e44e7ed 62fc2dd e44e7ed 62fc2dd e44e7ed 62fc2dd e195ac6 e44e7ed 62fc2dd 486004a e195ac6 e44e7ed e195ac6 62fc2dd e44e7ed 486004a fb8428f e195ac6 fb8428f 486004a c26f143 e44e7ed fb8428f 62fc2dd 8ffa15c e195ac6 e44e7ed e195ac6 62fc2dd e44e7ed 62fc2dd e195ac6 e44e7ed e195ac6 e44e7ed e195ac6 62fc2dd e195ac6 62fc2dd 8ffa15c 62fc2dd 8ffa15c 486004a 62fc2dd c26f143 62fc2dd e195ac6 c26f143 41d9eba 486004a e195ac6 47b7abe e195ac6 486004a fa9bc0c 5370608 486004a fa9bc0c 41d9eba e195ac6 cce8fbb 41d9eba 43dde8f fa9bc0c 43dde8f cce8fbb 486004a 41d9eba 5370608 41d9eba 5370608 486004a 43dde8f fa9bc0c 5370608 43dde8f 41d9eba 486004a cce8fbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 |
import gradio as gr
import requests
import pandas as pd
import plotly.graph_objects as go
from datetime import datetime
import os
HF_TOKEN = os.getenv("HF_TOKEN")
target_models = {
"openfree/flux-lora-korea-palace": "https://huggingface.co/openfree/flux-lora-korea-palace",
"seawolf2357/hanbok": "https://huggingface.co/seawolf2357/hanbok",
"LGAI-EXAONE/EXAONE-3.5-32B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-32B-Instruct",
"LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct",
"LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct",
"ginipick/flux-lora-eric-cat": "https://huggingface.co/ginipick/flux-lora-eric-cat",
"seawolf2357/flux-lora-car-rolls-royce": "https://huggingface.co/seawolf2357/flux-lora-car-rolls-royce",
"Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B",
"AALF/gemma-2-27b-it-SimPO-37K": "https://huggingface.co/AALF/gemma-2-27b-it-SimPO-37K",
"nbeerbower/mistral-nemo-wissenschaft-12B": "https://huggingface.co/nbeerbower/mistral-nemo-wissenschaft-12B",
"Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B",
"princeton-nlp/gemma-2-9b-it-SimPO": "https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO",
"migtissera/Tess-v2.5-Gemma-2-27B-alpha": "https://huggingface.co/migtissera/Tess-v2.5-Gemma-2-27B-alpha",
"DeepMount00/Llama-3.1-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3.1-8b-Ita",
"cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b": "https://huggingface.co/cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b",
"ai-human-lab/EEVE-Korean_Instruct-10.8B-expo": "https://huggingface.co/ai-human-lab/EEVE-Korean_Instruct-10.8B-expo",
"VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct",
"Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B",
"AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5",
"mlabonne/Daredevil-8B-abliterated": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated",
"ENERGY-DRINK-LOVE/eeve_dpo-v3": "https://huggingface.co/ENERGY-DRINK-LOVE/eeve_dpo-v3",
"migtissera/Trinity-2-Codestral-22B": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B",
"Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B",
"mlabonne/Daredevil-8B-abliterated-dpomix": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated-dpomix",
"yanolja/EEVE-Korean-Instruct-10.8B-v1.0": "https://huggingface.co/yanolja/EEVE-Korean-Instruct-10.8B-v1.0",
"vicgalle/Configurable-Llama-3.1-8B-Instruct": "https://huggingface.co/vicgalle/Configurable-Llama-3.1-8B-Instruct",
"T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0",
"Eurdem/Defne-llama3.1-8B": "https://huggingface.co/Eurdem/Defne-llama3.1-8B",
"BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B",
"BAAI/Infinity-Instruct-3M-0625-Llama3-8B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Llama3-8B",
"T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0",
"BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B",
"mightbe/EEVE-10.8B-Multiturn": "https://huggingface.co/mightbe/EEVE-10.8B-Multiturn",
"hyemijo/omed-llama3.1-8b": "https://huggingface.co/hyemijo/omed-llama3.1-8b",
"yanolja/Bookworm-10.7B-v0.4-DPO": "https://huggingface.co/yanolja/Bookworm-10.7B-v0.4-DPO",
"algograp-Inc/algograpV4": "https://huggingface.co/algograp-Inc/algograpV4",
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75",
"chihoonlee10/T3Q-LLM-MG-DPO-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-DPO-v1.0",
"vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B": "https://huggingface.co/vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B",
"RLHFlow/LLaMA3-iterative-DPO-final": "https://huggingface.co/RLHFlow/LLaMA3-iterative-DPO-final",
"SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx": "https://huggingface.co/SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx",
"spow12/Ko-Qwen2-7B-Instruct": "https://huggingface.co/spow12/Ko-Qwen2-7B-Instruct",
"BAAI/Infinity-Instruct-3M-0625-Qwen2-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Qwen2-7B",
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half",
"T3Q-LLM/T3Q-LLM1-CV-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v2.0",
"migtissera/Trinity-2-Codestral-22B-v0.2": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B-v0.2",
"sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval": "https://huggingface.co/sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval",
"MaziyarPanahi/Llama-3-8B-Instruct-v0.10": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.10",
"MaziyarPanahi/Llama-3-8B-Instruct-v0.9": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.9",
"zhengr/MixTAO-7Bx2-MoE-v8.1": "https://huggingface.co/zhengr/MixTAO-7Bx2-MoE-v8.1",
"TIGER-Lab/MAmmoTH2-8B-Plus": "https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus",
"OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k": "https://huggingface.co/OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k",
"haoranxu/Llama-3-Instruct-8B-CPO-SimPO": "https://huggingface.co/haoranxu/Llama-3-Instruct-8B-CPO-SimPO",
"Weyaxi/Einstein-v7-Qwen2-7B": "https://huggingface.co/Weyaxi/Einstein-v7-Qwen2-7B",
"DKYoon/kosolar-hermes-test": "https://huggingface.co/DKYoon/kosolar-hermes-test",
"vilm/Quyen-Pro-v0.1": "https://huggingface.co/vilm/Quyen-Pro-v0.1",
"chihoonlee10/T3Q-LLM-MG-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-v1.0",
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25",
"ai-human-lab/EEVE-Korean-10.8B-RAFT": "https://huggingface.co/ai-human-lab/EEVE-Korean-10.8B-RAFT",
"princeton-nlp/Llama-3-Base-8B-SFT-RDPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-RDPO",
"MaziyarPanahi/Llama-3-8B-Instruct-v0.8": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.8",
"chihoonlee10/T3Q-ko-solar-dpo-v7.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v7.0",
"jondurbin/bagel-8b-v1.0": "https://huggingface.co/jondurbin/bagel-8b-v1.0",
"DeepMount00/Llama-3-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3-8b-Ita",
"VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
"princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2",
"AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5",
"princeton-nlp/Llama-3-Base-8B-SFT-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-KTO",
"maywell/Mini_Synatra_SFT": "https://huggingface.co/maywell/Mini_Synatra_SFT",
"princeton-nlp/Llama-3-Base-8B-SFT-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-ORPO",
"princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2",
"spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat": "https://huggingface.co/spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat",
"princeton-nlp/Llama-3-Base-8B-SFT-DPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-DPO",
"princeton-nlp/Llama-3-Instruct-8B-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO",
"lcw99/llama-3-10b-it-kor-extented-chang": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang",
"migtissera/Llama-3-8B-Synthia-v3.5": "https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5",
"megastudyedu/M-SOLAR-10.7B-v1.4-dpo": "https://huggingface.co/megastudyedu/M-SOLAR-10.7B-v1.4-dpo",
"T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0",
"maywell/Synatra-10.7B-v0.4": "https://huggingface.co/maywell/Synatra-10.7B-v0.4",
"nlpai-lab/KULLM3": "https://huggingface.co/nlpai-lab/KULLM3",
"abacusai/Llama-3-Smaug-8B": "https://huggingface.co/abacusai/Llama-3-Smaug-8B",
"gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1",
"BAAI/Infinity-Instruct-3M-0625-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Mistral-7B",
"openchat/openchat_3.5": "https://huggingface.co/openchat/openchat_3.5",
"T3Q-LLM/T3Q-LLM1-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-v2.0",
"T3Q-LLM/T3Q-LLM1-CV-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v1.0",
"ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1",
"macadeliccc/Samantha-Qwen-2-7B": "https://huggingface.co/macadeliccc/Samantha-Qwen-2-7B",
"openchat/openchat-3.5-0106": "https://huggingface.co/openchat/openchat-3.5-0106",
"NousResearch/Nous-Hermes-2-SOLAR-10.7B": "https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B",
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1",
"MTSAIR/multi_verse_model": "https://huggingface.co/MTSAIR/multi_verse_model",
"gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0",
"VIRNECT/llama-3-Korean-8B": "https://huggingface.co/VIRNECT/llama-3-Korean-8B",
"ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3": "https://huggingface.co/ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3",
"SeaLLMs/SeaLLMs-v3-7B-Chat": "https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat",
"VIRNECT/llama-3-Korean-8B-V2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-V2",
"MLP-KTLim/llama-3-Korean-Bllossom-8B": "https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B",
"Magpie-Align/Llama-3-8B-Magpie-Align-v0.3": "https://huggingface.co/Magpie-Align/Llama-3-8B-Magpie-Align-v0.3",
"cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2": "https://huggingface.co/cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2",
"SkyOrbis/SKY-Ko-Llama3-8B-lora": "https://huggingface.co/SkyOrbis/SKY-Ko-Llama3-8B-lora",
"4yo1/llama3-eng-ko-8b-sl5": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl5",
"kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39": "https://huggingface.co/kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39",
"ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2",
"lcw99/llama-3-10b-it-kor-extented-chang-pro8": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang-pro8",
"BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B",
"migtissera/Tess-2.0-Llama-3-8B": "https://huggingface.co/migtissera/Tess-2.0-Llama-3-8B",
"BAAI/Infinity-Instruct-3M-0613-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0613-Mistral-7B",
"yeonwoo780/cydinfo-llama3-8b-lora-v01": "https://huggingface.co/yeonwoo780/cydinfo-llama3-8b-lora-v01",
"vicgalle/ConfigurableSOLAR-10.7B": "https://huggingface.co/vicgalle/ConfigurableSOLAR-10.7B",
"chihoonlee10/T3Q-ko-solar-jo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-jo-v1.0",
"Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4": "https://huggingface.co/Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4",
"Edentns/DataVortexS-10.7B-dpo-v1.0": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.0",
"SJ-Donald/SJ-SOLAR-10.7b-DPO": "https://huggingface.co/SJ-Donald/SJ-SOLAR-10.7b-DPO",
"lemon-mint/gemma-ko-7b-it-v0.40": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.40",
"GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3": "https://huggingface.co/GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3",
"hyeogi/SOLAR-10.7B-v1.5": "https://huggingface.co/hyeogi/SOLAR-10.7B-v1.5",
"etri-xainlp/llama3-8b-dpo_v1": "https://huggingface.co/etri-xainlp/llama3-8b-dpo_v1",
"LDCC/LDCC-SOLAR-10.7B": "https://huggingface.co/LDCC/LDCC-SOLAR-10.7B",
"chlee10/T3Q-Llama3-8B-Inst-sft1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-Inst-sft1.0",
"lemon-mint/gemma-ko-7b-it-v0.41": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.41",
"chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0",
"maywell/Synatra-7B-Instruct-v0.3-pre": "https://huggingface.co/maywell/Synatra-7B-Instruct-v0.3-pre",
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2",
"hwkwon/S-SOLAR-10.7B-v1.4": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.4",
"12thD/ko-Llama-3-8B-sft-v0.3": "https://huggingface.co/12thD/ko-Llama-3-8B-sft-v0.3",
"hkss/hk-SOLAR-10.7B-v1.4": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.4",
"lookuss/test-llilu": "https://huggingface.co/lookuss/test-llilu",
"chihoonlee10/T3Q-ko-solar-dpo-v3.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v3.0",
"chihoonlee10/T3Q-ko-solar-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v1.0",
"lcw99/llama-3-10b-wiki-240709-f": "https://huggingface.co/lcw99/llama-3-10b-wiki-240709-f",
"Edentns/DataVortexS-10.7B-v0.4": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.4",
"princeton-nlp/Llama-3-Instruct-8B-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-KTO",
"spow12/kosolar_4.1_sft": "https://huggingface.co/spow12/kosolar_4.1_sft",
"natong19/Qwen2-7B-Instruct-abliterated": "https://huggingface.co/natong19/Qwen2-7B-Instruct-abliterated",
"megastudyedu/ME-dpo-7B-v1.1": "https://huggingface.co/megastudyedu/ME-dpo-7B-v1.1",
"01-ai/Yi-1.5-9B-Chat-16K": "https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K",
"Edentns/DataVortexS-10.7B-dpo-v0.1": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v0.1",
"Alphacode-AI/AlphaMist7B-slr-v4-slow": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v4-slow",
"chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0",
"hwkwon/S-SOLAR-10.7B-v1.1": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.1",
"DopeorNope/Dear_My_best_Friends-13B": "https://huggingface.co/DopeorNope/Dear_My_best_Friends-13B",
"GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2": "https://huggingface.co/GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2",
"PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct": "https://huggingface.co/PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct",
"vicgalle/ConfigurableHermes-7B": "https://huggingface.co/vicgalle/ConfigurableHermes-7B",
"maywell/PiVoT-10.7B-Mistral-v0.2": "https://huggingface.co/maywell/PiVoT-10.7B-Mistral-v0.2",
"failspy/Meta-Llama-3-8B-Instruct-abliterated-v3": "https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3",
"lemon-mint/gemma-ko-7b-instruct-v0.50": "https://huggingface.co/lemon-mint/gemma-ko-7b-instruct-v0.50",
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT",
"maywell/PiVoT-0.1-early": "https://huggingface.co/maywell/PiVoT-0.1-early",
"hwkwon/S-SOLAR-10.7B-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.3",
"werty1248/Llama-3-Ko-8B-Instruct-AOG": "https://huggingface.co/werty1248/Llama-3-Ko-8B-Instruct-AOG",
"Alphacode-AI/AlphaMist7B-slr-v2": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v2",
"maywell/koOpenChat-sft": "https://huggingface.co/maywell/koOpenChat-sft",
"lemon-mint/gemma-7b-openhermes-v0.80": "https://huggingface.co/lemon-mint/gemma-7b-openhermes-v0.80",
"VIRNECT/llama-3-Korean-8B-r-v1": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v1",
"Alphacode-AI/AlphaMist7B-slr-v1": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v1",
"Loyola/Mistral-7b-ITmodel": "https://huggingface.co/Loyola/Mistral-7b-ITmodel",
"VIRNECT/llama-3-Korean-8B-r-v2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v2",
"NLPark/AnFeng_v3.1-Avocet": "https://huggingface.co/NLPark/AnFeng_v3.1-Avocet",
"maywell/Synatra_TbST11B_EP01": "https://huggingface.co/maywell/Synatra_TbST11B_EP01",
"GritLM/GritLM-7B-KTO": "https://huggingface.co/GritLM/GritLM-7B-KTO",
"01-ai/Yi-34B-Chat": "https://huggingface.co/01-ai/Yi-34B-Chat",
"ValiantLabs/Llama3.1-8B-ShiningValiant2": "https://huggingface.co/ValiantLabs/Llama3.1-8B-ShiningValiant2",
"princeton-nlp/Llama-3-Base-8B-SFT-CPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-CPO",
"hyokwan/hkcode_llama3_8b": "https://huggingface.co/hyokwan/hkcode_llama3_8b",
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3",
"yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0": "https://huggingface.co/yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0",
"juungwon/Llama-3-cs-LoRA": "https://huggingface.co/juungwon/Llama-3-cs-LoRA",
"gangyeolkim/llama-3-chat": "https://huggingface.co/gangyeolkim/llama-3-chat",
"mncai/llama2-13b-dpo-v3": "https://huggingface.co/mncai/llama2-13b-dpo-v3",
"maywell/Synatra-Zephyr-7B-v0.01": "https://huggingface.co/maywell/Synatra-Zephyr-7B-v0.01",
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT",
"juungwon/Llama-3-constructionsafety-LoRA": "https://huggingface.co/juungwon/Llama-3-constructionsafety-LoRA",
"princeton-nlp/Mistral-7B-Base-SFT-SimPO": "https://huggingface.co/princeton-nlp/Mistral-7B-Base-SFT-SimPO",
"moondriller/solar10B-eugeneparkthebestv2": "https://huggingface.co/moondriller/solar10B-eugeneparkthebestv2",
"chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0",
"Edentns/DataVortexS-10.7B-dpo-v1.7": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.7",
"gamzadole/llama3_instruct_tuning_without_pretraing": "https://huggingface.co/gamzadole/llama3_instruct_tuning_without_pretraing",
"saltlux/Ko-Llama3-Luxia-8B": "https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B",
"kimdeokgi/ko-pt-model-test1": "https://huggingface.co/kimdeokgi/ko-pt-model-test1",
"maywell/Synatra-11B-Testbench-2": "https://huggingface.co/maywell/Synatra-11B-Testbench-2",
"Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO": "https://huggingface.co/Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO",
"vicgalle/Configurable-Mistral-7B": "https://huggingface.co/vicgalle/Configurable-Mistral-7B",
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT",
"beomi/Llama-3-Open-Ko-8B-Instruct-preview": "https://huggingface.co/beomi/Llama-3-Open-Ko-8B-Instruct-preview",
"Edentns/DataVortexS-10.7B-dpo-v1.3": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.3",
"spow12/Llama3_ko_4.2_sft": "https://huggingface.co/spow12/Llama3_ko_4.2_sft",
"maywell/Llama-3-Ko-8B-Instruct": "https://huggingface.co/maywell/Llama-3-Ko-8B-Instruct",
"T3Q-LLM/T3Q-LLM3-NC-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM3-NC-v1.0",
"ehartford/dolphin-2.2.1-mistral-7b": "https://huggingface.co/ehartford/dolphin-2.2.1-mistral-7b",
"hwkwon/S-SOLAR-10.7B-SFT-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-SFT-v1.3",
"sel303/llama3-instruct-diverce-v2.0": "https://huggingface.co/sel303/llama3-instruct-diverce-v2.0",
"4yo1/llama3-eng-ko-8b-sl3": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl3",
"hkss/hk-SOLAR-10.7B-v1.1": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.1",
"Open-Orca/Mistral-7B-OpenOrca": "https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca",
"hyokwan/familidata": "https://huggingface.co/hyokwan/familidata",
"uukuguy/zephyr-7b-alpha-dare-0.85": "https://huggingface.co/uukuguy/zephyr-7b-alpha-dare-0.85",
"gwonny/nox-solar-10.7b-v4-kolon-all-5": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-5",
"shleeeee/mistral-ko-tech-science-v1": "https://huggingface.co/shleeeee/mistral-ko-tech-science-v1",
"Deepnoid/deep-solar-eeve-KorSTS": "https://huggingface.co/Deepnoid/deep-solar-eeve-KorSTS",
"AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0": "https://huggingface.co/AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0",
"tlphams/gollm-tendency-45": "https://huggingface.co/tlphams/gollm-tendency-45",
"realPCH/ko_solra_merge": "https://huggingface.co/realPCH/ko_solra_merge",
"Cartinoe5930/original-KoRAE-13b": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b",
"GAI-LLM/Yi-Ko-6B-dpo-v5": "https://huggingface.co/GAI-LLM/Yi-Ko-6B-dpo-v5",
"Minirecord/Mini_DPO_test02": "https://huggingface.co/Minirecord/Mini_DPO_test02",
"AIJUUD/juud-Mistral-7B-dpo": "https://huggingface.co/AIJUUD/juud-Mistral-7B-dpo",
"gwonny/nox-solar-10.7b-v4-kolon-all-10": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-10",
"jieunhan/TEST_MODEL": "https://huggingface.co/jieunhan/TEST_MODEL",
"etri-xainlp/kor-llama2-13b-dpo": "https://huggingface.co/etri-xainlp/kor-llama2-13b-dpo",
"ifuseok/yi-ko-playtus-instruct-v0.2": "https://huggingface.co/ifuseok/yi-ko-playtus-instruct-v0.2",
"Cartinoe5930/original-KoRAE-13b-3ep": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b-3ep",
"Trofish/KULLM-RLHF": "https://huggingface.co/Trofish/KULLM-RLHF",
"wkshin89/Yi-Ko-6B-Instruct-v1.0": "https://huggingface.co/wkshin89/Yi-Ko-6B-Instruct-v1.0",
"momo/polyglot-ko-12.8b-Chat-QLoRA-Merge": "https://huggingface.co/momo/polyglot-ko-12.8b-Chat-QLoRA-Merge",
"PracticeLLM/Custom-KoLLM-13B-v5": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v5",
"BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B",
"MRAIRR/minillama3_8b_all": "https://huggingface.co/MRAIRR/minillama3_8b_all",
"failspy/Phi-3-medium-4k-instruct-abliterated-v3": "https://huggingface.co/failspy/Phi-3-medium-4k-instruct-abliterated-v3",
"DILAB-HYU/koquality-polyglot-12.8b": "https://huggingface.co/DILAB-HYU/koquality-polyglot-12.8b",
"kyujinpy/Korean-OpenOrca-v3": "https://huggingface.co/kyujinpy/Korean-OpenOrca-v3",
"4yo1/llama3-eng-ko-8b": "https://huggingface.co/4yo1/llama3-eng-ko-8b",
"4yo1/llama3-eng-ko-8": "https://huggingface.co/4yo1/llama3-eng-ko-8",
"4yo1/llama3-eng-ko-8-llama": "https://huggingface.co/4yo1/llama3-eng-ko-8-llama",
"PracticeLLM/Custom-KoLLM-13B-v2": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v2",
"kyujinpy/KOR-Orca-Platypus-13B-v2": "https://huggingface.co/kyujinpy/KOR-Orca-Platypus-13B-v2",
"ghost-x/ghost-7b-alpha": "https://huggingface.co/ghost-x/ghost-7b-alpha",
"HumanF-MarkrAI/pub-llama-13B-v6": "https://huggingface.co/HumanF-MarkrAI/pub-llama-13B-v6",
"nlpai-lab/kullm-polyglot-5.8b-v2": "https://huggingface.co/nlpai-lab/kullm-polyglot-5.8b-v2",
"maywell/Synatra-42dot-1.3B": "https://huggingface.co/maywell/Synatra-42dot-1.3B",
"yhkim9362/gemma-en-ko-7b-v0.1": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.1",
"yhkim9362/gemma-en-ko-7b-v0.2": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.2",
"daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B": "https://huggingface.co/daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B",
"beomi/Yi-Ko-6B": "https://huggingface.co/beomi/Yi-Ko-6B",
"jojo0217/ChatSKKU5.8B": "https://huggingface.co/jojo0217/ChatSKKU5.8B",
"Deepnoid/deep-solar-v2.0.7": "https://huggingface.co/Deepnoid/deep-solar-v2.0.7",
"01-ai/Yi-1.5-9B": "https://huggingface.co/01-ai/Yi-1.5-9B",
"PracticeLLM/Custom-KoLLM-13B-v4": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v4",
"nuebaek/komt_mistral_mss_user_0_max_steps_80": "https://huggingface.co/nuebaek/komt_mistral_mss_user_0_max_steps_80",
"dltjdgh0928/lsh_finetune_v0.11": "https://huggingface.co/dltjdgh0928/lsh_finetune_v0.11",
"shleeeee/mistral-7b-wiki": "https://huggingface.co/shleeeee/mistral-7b-wiki",
"nayohan/polyglot-ko-5.8b-Inst": "https://huggingface.co/nayohan/polyglot-ko-5.8b-Inst",
"ifuseok/sft-solar-10.7b-v1.1": "https://huggingface.co/ifuseok/sft-solar-10.7b-v1.1",
"Junmai/KIT-5.8b": "https://huggingface.co/Junmai/KIT-5.8b",
"heegyu/polyglot-ko-3.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-3.8b-chat",
"etri-xainlp/polyglot-ko-12.8b-instruct": "https://huggingface.co/etri-xainlp/polyglot-ko-12.8b-instruct",
"OpenBuddy/openbuddy-mistral2-7b-v20.3-32k": "https://huggingface.co/OpenBuddy/openbuddy-mistral2-7b-v20.3-32k",
"sh2orc/Llama-3-Korean-8B": "https://huggingface.co/sh2orc/Llama-3-Korean-8B",
"Deepnoid/deep-solar-eeve-v2.0.0": "https://huggingface.co/Deepnoid/deep-solar-eeve-v2.0.0",
"Herry443/Mistral-7B-KNUT-ref": "https://huggingface.co/Herry443/Mistral-7B-KNUT-ref",
"heegyu/polyglot-ko-5.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-5.8b-chat",
"jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3": "https://huggingface.co/jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3",
"DILAB-HYU/KoQuality-Polyglot-5.8b": "https://huggingface.co/DILAB-HYU/KoQuality-Polyglot-5.8b",
"Byungchae/k2s3_test_0000": "https://huggingface.co/Byungchae/k2s3_test_0000",
"migtissera/Tess-v2.5-Phi-3-medium-128k-14B": "https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B",
"kyujinpy/Korean-OpenOrca-13B": "https://huggingface.co/kyujinpy/Korean-OpenOrca-13B",
"kyujinpy/KO-Platypus2-13B": "https://huggingface.co/kyujinpy/KO-Platypus2-13B",
"jin05102518/Astral-7B-Instruct-v0.01": "https://huggingface.co/jin05102518/Astral-7B-Instruct-v0.01",
"Byungchae/k2s3_test_0002": "https://huggingface.co/Byungchae/k2s3_test_0002",
"NousResearch/Nous-Hermes-llama-2-7b": "https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b",
"kaist-ai/prometheus-13b-v1.0": "https://huggingface.co/kaist-ai/prometheus-13b-v1.0",
"sel303/llama3-diverce-ver1.0": "https://huggingface.co/sel303/llama3-diverce-ver1.0",
"NousResearch/Nous-Capybara-7B": "https://huggingface.co/NousResearch/Nous-Capybara-7B",
"rrw-x2/KoSOLAR-10.7B-DPO-v1.0": "https://huggingface.co/rrw-x2/KoSOLAR-10.7B-DPO-v1.0",
"Edentns/DataVortexS-10.7B-v0.2": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.2",
"Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6": "https://huggingface.co/Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6",
"tlphams/gollm-instruct-all-in-one-v1": "https://huggingface.co/tlphams/gollm-instruct-all-in-one-v1",
"Edentns/DataVortexTL-1.1B-v0.1": "https://huggingface.co/Edentns/DataVortexTL-1.1B-v0.1",
"richard-park/llama3-pre1-ds": "https://huggingface.co/richard-park/llama3-pre1-ds",
"ehartford/samantha-1.1-llama-33b": "https://huggingface.co/ehartford/samantha-1.1-llama-33b",
"heegyu/LIMA-13b-hf": "https://huggingface.co/heegyu/LIMA-13b-hf",
"heegyu/42dot_LLM-PLM-1.3B-mt": "https://huggingface.co/heegyu/42dot_LLM-PLM-1.3B-mt",
"shleeeee/mistral-ko-7b-wiki-neft": "https://huggingface.co/shleeeee/mistral-ko-7b-wiki-neft",
"EleutherAI/polyglot-ko-1.3b": "https://huggingface.co/EleutherAI/polyglot-ko-1.3b",
"kyujinpy/Ko-PlatYi-6B-gu": "https://huggingface.co/kyujinpy/Ko-PlatYi-6B-gu",
"sel303/llama3-diverce-ver1.6": "https://huggingface.co/sel303/llama3-diverce-ver1.6"
}
def get_models_data(progress=gr.Progress()):
"""λͺ¨λΈ λ°μ΄ν° κ°μ Έμ€κΈ°"""
url = "https://huggingface.co/api/models/trending" # trending μ μ© μλν¬μΈνΈ
try:
progress(0, desc="Fetching models data...")
params = {
'full': 'true',
'limit': 1000, # 1000μκΉμ§ κ°μ Έμ€κΈ°
'interval': 'day' # μΌκ° νΈλ λ©
}
response = requests.get(url, params=params)
response.raise_for_status()
all_models = response.json()
print(f"Total models fetched: {len(all_models)}")
# μ 체 λͺ¨λΈμ μμ μ 보 μ μ₯ (1000μκΉμ§)
model_ranks = {model['id']: idx + 1 for idx, model in enumerate(all_models)}
# target_modelsμ μλ λͺ¨λΈλ§ νν°λ§νκ³ μ€μ μμ ν¬ν¨
filtered_models = []
for model in all_models:
if model.get('id', '') in target_models:
model['rank'] = model_ranks[model['id']]
filtered_models.append(model)
print(f"Found model: {model['id']} at rank {model['rank']}")
# μμλ‘ μ λ ¬
filtered_models.sort(key=lambda x: x['rank'])
if not filtered_models:
print("No matching models found in the response")
return create_error_plot(), "<div>μ νλ λͺ¨λΈμ λ°μ΄ν°λ₯Ό μ°Ύμ μ μμ΅λλ€.</div>", pd.DataFrame()
progress(0.3, desc="Creating visualization...")
# μκ°ν μμ±
fig = go.Figure()
# λ°μ΄ν° μ€λΉ
ids = [model['id'] for model in filtered_models]
ranks = [model['rank'] for model in filtered_models]
likes = [model.get('likes', 0) for model in filtered_models]
downloads = [model.get('downloads', 0) for model in filtered_models]
# YμΆ κ°μ λ°μ (1000 - rank + 1)
y_values = [1001 - r for r in ranks]
# λ§λ κ·Έλν μμ±
fig.add_trace(go.Bar(
x=ids,
y=y_values,
text=[f"Rank: {r}<br>Likes: {l}<br>Downloads: {d}"
for r, l, d in zip(ranks, likes, downloads)],
textposition='auto',
marker_color='rgb(158,202,225)',
opacity=0.8
))
fig.update_layout(
title={
'text': 'Hugging Face Models Trending Rankings (Top 1000)',
'y':0.95,
'x':0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis_title='Model ID',
yaxis_title='Rank',
yaxis=dict(
ticktext=[str(i) for i in range(1, 1001, 50)],
tickvals=[1001 - i for i in range(1, 1001, 50)],
range=[0, 1000]
),
height=800,
showlegend=False,
template='plotly_white',
xaxis_tickangle=-45
)
progress(0.6, desc="Creating model cards...")
# HTML μΉ΄λ μμ±
html_content = """
<div style='padding: 20px; background: #f5f5f5;'>
<h2 style='color: #2c3e50;'>Models Trending Rankings</h2>
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
"""
# μμκΆ λ΄ λͺ¨λΈ μΉ΄λ μμ±
for model in filtered_models:
model_id = model.get('id', '')
rank = model.get('rank', 'N/A')
likes = model.get('likes', 0)
downloads = model.get('downloads', 0)
html_content += f"""
<div style='
background: white;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
transition: transform 0.2s;
'>
<h3 style='color: #34495e;'>Rank #{rank} - {model_id}</h3>
<p style='color: #7f8c8d;'>π Likes: {likes}</p>
<p style='color: #7f8c8d;'>β¬οΈ Downloads: {downloads}</p>
<a href='{target_models[model_id]}'
target='_blank'
style='
display: inline-block;
padding: 8px 16px;
background: #3498db;
color: white;
text-decoration: none;
border-radius: 5px;
transition: background 0.3s;
'>
Visit Model π
</a>
</div>
"""
progress((0.6 + 0.3 * filtered_models.index(model)/len(filtered_models)),
desc=f"Loading model {filtered_models.index(model)+1}/{len(filtered_models)}...")
# μμκΆ λ° λͺ¨λΈ μΉ΄λ μμ±
for model_id in target_models:
if model_id not in [m['id'] for m in filtered_models]:
html_content += f"""
<div style='
background: #f8f9fa;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
'>
<h3 style='color: #34495e;'>{model_id}</h3>
<p style='color: #7f8c8d;'>Not in top 1000</p>
<a href='{target_models[model_id]}'
target='_blank'
style='
display: inline-block;
padding: 8px 16px;
background: #95a5a6;
color: white;
text-decoration: none;
border-radius: 5px;
'>
Visit Model π
</a>
</div>
"""
html_content += "</div></div>"
# λ°μ΄ν°νλ μ μμ±
df_data = []
# μμκΆ λ΄ λͺ¨λΈ
for model in filtered_models:
df_data.append({
'Rank': model.get('rank', 'N/A'),
'Model ID': model.get('id', ''),
'Likes': model.get('likes', 'N/A'),
'Downloads': model.get('downloads', 'N/A'),
'URL': target_models[model.get('id', '')]
})
# μμκΆ λ° λͺ¨λΈ
for model_id in target_models:
if model_id not in [m['id'] for m in filtered_models]:
df_data.append({
'Rank': 'Not in top 1000',
'Model ID': model_id,
'Likes': 'N/A',
'Downloads': 'N/A',
'URL': target_models[model_id]
})
df = pd.DataFrame(df_data)
progress(1.0, desc="Complete!")
return fig, html_content, df
except Exception as e:
print(f"Error in get_models_data: {str(e)}")
return create_error_plot(), f"<div>μλ¬ λ°μ: {str(e)}</div>", pd.DataFrame()
# κ΄μ¬ μ€νμ΄μ€ URL 리μ€νΈμ μ 보
target_spaces = {
"ginipick/FLUXllama": "https://huggingface.co/spaces/ginipick/FLUXllama",
"ginipick/SORA-3D": "https://huggingface.co/spaces/ginipick/SORA-3D",
"fantaxy/Sound-AI-SFX": "https://huggingface.co/spaces/fantaxy/Sound-AI-SFX",
"fantos/flx8lora": "https://huggingface.co/spaces/fantos/flx8lora",
"ginigen/Canvas": "https://huggingface.co/spaces/ginigen/Canvas",
"fantaxy/erotica": "https://huggingface.co/spaces/fantaxy/erotica",
"ginipick/time-machine": "https://huggingface.co/spaces/ginipick/time-machine",
"aiqcamp/FLUX-VisionReply": "https://huggingface.co/spaces/aiqcamp/FLUX-VisionReply",
"openfree/Tetris-Game": "https://huggingface.co/spaces/openfree/Tetris-Game",
"openfree/everychat": "https://huggingface.co/spaces/openfree/everychat",
"VIDraft/mouse1": "https://huggingface.co/spaces/VIDraft/mouse1",
"kolaslab/alpha-go": "https://huggingface.co/spaces/kolaslab/alpha-go",
"ginipick/text3d": "https://huggingface.co/spaces/ginipick/text3d",
"openfree/trending-board": "https://huggingface.co/spaces/openfree/trending-board",
"cutechicken/tankwar": "https://huggingface.co/spaces/cutechicken/tankwar",
"openfree/game-jewel": "https://huggingface.co/spaces/openfree/game-jewel",
"VIDraft/mouse-chat": "https://huggingface.co/spaces/VIDraft/mouse-chat",
"ginipick/AccDiffusion": "https://huggingface.co/spaces/ginipick/AccDiffusion",
"aiqtech/Particle-Accelerator-Simulation": "https://huggingface.co/spaces/aiqtech/Particle-Accelerator-Simulation",
"openfree/GiniGEN": "https://huggingface.co/spaces/openfree/GiniGEN",
"kolaslab/3DAudio-Spectrum-Analyzer": "https://huggingface.co/spaces/kolaslab/3DAudio-Spectrum-Analyzer",
"openfree/trending-news-24": "https://huggingface.co/spaces/openfree/trending-news-24",
"ginipick/Realtime-FLUX": "https://huggingface.co/spaces/ginipick/Realtime-FLUX",
"VIDraft/prime-number": "https://huggingface.co/spaces/VIDraft/prime-number",
"kolaslab/zombie-game": "https://huggingface.co/spaces/kolaslab/zombie-game",
"fantos/miro-game": "https://huggingface.co/spaces/fantos/miro-game",
"kolaslab/shooting": "https://huggingface.co/spaces/kolaslab/shooting",
"VIDraft/Mouse-Hackathon": "https://huggingface.co/spaces/VIDraft/Mouse-Hackathon",
"upstage/open-ko-llm-leaderboard": "https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard",
"LGAI-EXAONE/EXAONE-3.5-Instruct-Demo": "https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.5-Instruct-Demo",
"NCSOFT/VARCO_Arena": "https://huggingface.co/spaces/NCSOFT/VARCO_Arena"
}
def get_spaces_data(sort_type="trending", progress=gr.Progress()):
"""μ€νμ΄μ€ λ°μ΄ν° κ°μ Έμ€κΈ° (trending λλ modes)"""
url = f"https://huggingface.co/api/spaces"
params = {
'full': 'true',
'limit': 300
}
if sort_type == "modes":
params['sort'] = 'likes' # modesλ μ’μμ μμΌλ‘ μ λ ¬
try:
progress(0, desc=f"Fetching {sort_type} spaces data...")
response = requests.get(url, params=params)
response.raise_for_status()
all_spaces = response.json()
# μμ μ 보 μ μ₯
space_ranks = {space['id']: idx + 1 for idx, space in enumerate(all_spaces)}
# target_spaces νν°λ§ λ° μμ μ 보 ν¬ν¨
spaces = []
for space in all_spaces:
if space.get('id', '') in target_spaces:
space['rank'] = space_ranks.get(space['id'], 'N/A')
spaces.append(space)
# μμλ³λ‘ μ λ ¬
spaces.sort(key=lambda x: x['rank'])
progress(0.3, desc="Creating visualization...")
# μκ°ν μμ±
fig = go.Figure()
# λ°μ΄ν° μ€λΉ
ids = [space['id'] for space in spaces]
ranks = [space['rank'] for space in spaces]
likes = [space.get('likes', 0) for space in spaces]
# YμΆ κ°μ λ°μ (300 - rank + 1)
y_values = [301 - r for r in ranks] # μμλ₯Ό λ°μ λ κ°μΌλ‘ λ³ν
# λ§λ κ·Έλν μμ±
fig.add_trace(go.Bar(
x=ids,
y=y_values,
text=[f"Rank: {r}<br>Likes: {l}" for r, l in zip(ranks, likes)],
textposition='auto',
marker_color='rgb(158,202,225)',
opacity=0.8
))
fig.update_layout(
title={
'text': f'Hugging Face Spaces {sort_type.title()} Rankings (Top 300)',
'y':0.95,
'x':0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis_title='Space ID',
yaxis_title='Rank',
yaxis=dict(
ticktext=[str(i) for i in range(1, 301, 20)], # 1λΆν° 300κΉμ§ 20 κ°κ²©
tickvals=[301 - i for i in range(1, 301, 20)], # λ°μ λ κ°
range=[0, 300] # yμΆ λ²μ μ€μ
),
height=800,
showlegend=False,
template='plotly_white',
xaxis_tickangle=-45
)
progress(0.6, desc="Creating space cards...")
# HTML μΉ΄λ μμ±
html_content = f"""
<div style='padding: 20px; background: #f5f5f5;'>
<h2 style='color: #2c3e50;'>{sort_type.title()} Rankings</h2>
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
"""
for space in spaces:
space_id = space.get('id', '')
rank = space.get('rank', 'N/A')
likes = space.get('likes', 0)
title = space.get('title', 'No Title')
description = space.get('description', 'No Description')[:100]
html_content += f"""
<div style='
background: white;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
transition: transform 0.2s;
'>
<h3 style='color: #34495e;'>Rank #{rank} - {space_id}</h3>
<p style='color: #7f8c8d;'>π Likes: {likes}</p>
<p style='color: #2c3e50;'>{title}</p>
<p style='color: #7f8c8d; font-size: 0.9em;'>{description}...</p>
<a href='{target_spaces[space_id]}'
target='_blank'
style='
display: inline-block;
padding: 8px 16px;
background: #3498db;
color: white;
text-decoration: none;
border-radius: 5px;
transition: background 0.3s;
'>
Visit Space π
</a>
</div>
"""
html_content += "</div></div>"
# λ°μ΄ν°νλ μ μμ±
df = pd.DataFrame([{
'Rank': space.get('rank', 'N/A'),
'Space ID': space.get('id', ''),
'Likes': space.get('likes', 'N/A'),
'Title': space.get('title', 'N/A'),
'URL': target_spaces[space.get('id', '')]
} for space in spaces])
progress(1.0, desc="Complete!")
return fig, html_content, df
except Exception as e:
error_html = f'<div style="color: red; padding: 20px;">Error: {str(e)}</div>'
error_plot = create_error_plot()
return error_plot, error_html, pd.DataFrame()
def create_trend_visualization(spaces_data):
if not spaces_data:
return create_error_plot()
fig = go.Figure()
# μμ λ°μ΄ν° μ€λΉ
ranks = []
for idx, space in enumerate(spaces_data, 1):
space_id = space.get('id', '')
if space_id in target_spaces:
ranks.append({
'id': space_id,
'rank': idx,
'likes': space.get('likes', 0),
'title': space.get('title', 'N/A'),
'views': space.get('views', 0)
})
if not ranks:
return create_error_plot()
# μμλ³λ‘ μ λ ¬
ranks.sort(key=lambda x: x['rank'])
# νλ‘― λ°μ΄ν° μμ±
ids = [r['id'] for r in ranks]
rank_values = [r['rank'] for r in ranks]
likes = [r['likes'] for r in ranks]
views = [r['views'] for r in ranks]
# λ§λ κ·Έλν μμ±
fig.add_trace(go.Bar(
x=ids,
y=rank_values,
text=[f"Rank: {r}<br>Likes: {l}<br>Views: {v}" for r, l, v in zip(rank_values, likes, views)],
textposition='auto',
marker_color='rgb(158,202,225)',
opacity=0.8
))
fig.update_layout(
title={
'text': 'Current Trending Ranks (All Target Spaces)',
'y':0.95,
'x':0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis_title='Space ID',
yaxis_title='Trending Rank',
yaxis_autorange='reversed',
height=800,
showlegend=False,
template='plotly_white',
xaxis_tickangle=-45
)
return fig
# ν ν°μ΄ μλ κ²½μ°λ₯Ό μν λ체 ν¨μ
def get_trending_spaces_without_token():
try:
url = "https://huggingface.co/api/spaces"
params = {
'sort': 'likes',
'direction': -1,
'limit': 1000,
'full': 'true'
}
response = requests.get(url, params=params)
if response.status_code == 200:
return response.json()
else:
print(f"API μμ² μ€ν¨ (ν ν° μμ): {response.status_code}")
print(f"Response: {response.text}")
return None
except Exception as e:
print(f"API νΈμΆ μ€ μλ¬ λ°μ (ν ν° μμ): {str(e)}")
return None
# API ν ν° μ€μ λ° ν¨μ μ ν
if not HF_TOKEN:
get_trending_spaces = get_trending_spaces_without_token
def create_error_plot():
fig = go.Figure()
fig.add_annotation(
text="λ°μ΄ν°λ₯Ό λΆλ¬μ¬ μ μμ΅λλ€.\n(API μΈμ¦μ΄ νμν©λλ€)",
xref="paper",
yref="paper",
x=0.5,
y=0.5,
showarrow=False,
font=dict(size=20)
)
fig.update_layout(
title="Error Loading Data",
height=400
)
return fig
def create_space_info_html(spaces_data):
if not spaces_data:
return "<div style='padding: 20px;'><h2>λ°μ΄ν°λ₯Ό λΆλ¬μ€λλ° μ€ν¨νμ΅λλ€.</h2></div>"
html_content = """
<div style='padding: 20px;'>
<h2 style='color: #2c3e50;'>Current Trending Rankings</h2>
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
"""
# λͺ¨λ target spacesλ₯Ό ν¬ν¨νλλ‘ μμ
for space_id in target_spaces.keys():
space_info = next((s for s in spaces_data if s.get('id') == space_id), None)
if space_info:
rank = next((idx for idx, s in enumerate(spaces_data, 1) if s.get('id') == space_id), 'N/A')
html_content += f"""
<div style='
background: white;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
transition: transform 0.2s;
'>
<h3 style='color: #34495e;'>#{rank} - {space_id}</h3>
<p style='color: #7f8c8d;'>π Likes: {space_info.get('likes', 'N/A')}</p>
<p style='color: #7f8c8d;'>π Views: {space_info.get('views', 'N/A')}</p>
<p style='color: #2c3e50;'>{space_info.get('title', 'N/A')}</p>
<p style='color: #7f8c8d; font-size: 0.9em;'>{space_info.get('description', 'N/A')[:100]}...</p>
<a href='{target_spaces[space_id]}'
target='_blank'
style='
display: inline-block;
padding: 8px 16px;
background: #3498db;
color: white;
text-decoration: none;
border-radius: 5px;
transition: background 0.3s;
'>
Visit Space π
</a>
</div>
"""
else:
html_content += f"""
<div style='
background: #f8f9fa;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
'>
<h3 style='color: #34495e;'>{space_id}</h3>
<p style='color: #7f8c8d;'>Not in trending</p>
<a href='{target_spaces[space_id]}'
target='_blank'
style='
display: inline-block;
padding: 8px 16px;
background: #95a5a6;
color: white;
text-decoration: none;
border-radius: 5px;
'>
Visit Space π
</a>
</div>
"""
html_content += "</div></div>"
return html_content
def create_data_table(spaces_data):
if not spaces_data:
return pd.DataFrame()
rows = []
for idx, space in enumerate(spaces_data, 1):
space_id = space.get('id', '')
if space_id in target_spaces:
rows.append({
'Rank': idx,
'Space ID': space_id,
'Likes': space.get('likes', 'N/A'),
'Title': space.get('title', 'N/A'),
'URL': target_spaces[space_id]
})
return pd.DataFrame(rows)
def refresh_data():
spaces_data = get_trending_spaces()
if spaces_data:
plot = create_trend_visualization(spaces_data)
info = create_space_info_html(spaces_data)
df = create_data_table(spaces_data)
return plot, info, df
else:
return create_error_plot(), "<div>API μΈμ¦μ΄ νμν©λλ€.</div>", pd.DataFrame()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π€ νκΉ
νμ΄μ€ 'νκ΅ λ¦¬λ보λ'
μ€μκ°μΌλ‘ Hugging Faceμ Spacesμ Models μΈκΈ° μμλ₯Ό λΆμν©λλ€. μ κ· λ±λ‘ μμ²: arxivgpt@gmail.com
""")
with gr.Tab("Spaces Trending"):
trending_plot = gr.Plot()
trending_info = gr.HTML()
trending_df = gr.DataFrame()
with gr.Tab("Models Trending"):
models_plot = gr.Plot()
models_info = gr.HTML()
models_df = gr.DataFrame()
refresh_btn = gr.Button("π Refresh Data", variant="primary")
def refresh_all_data():
spaces_results = get_spaces_data("trending")
models_results = get_models_data()
return [*spaces_results, *models_results]
refresh_btn.click(
refresh_all_data,
outputs=[
trending_plot, trending_info, trending_df,
models_plot, models_info, models_df
]
)
# μ΄κΈ° λ°μ΄ν° λ‘λ
spaces_results = get_spaces_data("trending")
models_results = get_models_data()
trending_plot.value, trending_info.value, trending_df.value = spaces_results
models_plot.value, models_info.value, models_df.value = models_results
# Gradio μ± μ€ν
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
) |