Spaces:
Building
Building
import gradio as gr | |
import requests | |
import pandas as pd | |
import plotly.graph_objects as go | |
from datetime import datetime | |
import os | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
target_models = { | |
"openfree/flux-lora-korea-palace": "https://huggingface.co/openfree/flux-lora-korea-palace", | |
"seawolf2357/hanbok": "https://huggingface.co/seawolf2357/hanbok", | |
"LGAI-EXAONE/EXAONE-3.5-32B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-32B-Instruct", | |
"LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct", | |
"LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct", | |
"ginipick/flux-lora-eric-cat": "https://huggingface.co/ginipick/flux-lora-eric-cat", | |
"seawolf2357/flux-lora-car-rolls-royce": "https://huggingface.co/seawolf2357/flux-lora-car-rolls-royce", | |
"Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B", | |
"AALF/gemma-2-27b-it-SimPO-37K": "https://huggingface.co/AALF/gemma-2-27b-it-SimPO-37K", | |
"nbeerbower/mistral-nemo-wissenschaft-12B": "https://huggingface.co/nbeerbower/mistral-nemo-wissenschaft-12B", | |
"Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B", | |
"princeton-nlp/gemma-2-9b-it-SimPO": "https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO", | |
"migtissera/Tess-v2.5-Gemma-2-27B-alpha": "https://huggingface.co/migtissera/Tess-v2.5-Gemma-2-27B-alpha", | |
"DeepMount00/Llama-3.1-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3.1-8b-Ita", | |
"cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b": "https://huggingface.co/cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b", | |
"ai-human-lab/EEVE-Korean_Instruct-10.8B-expo": "https://huggingface.co/ai-human-lab/EEVE-Korean_Instruct-10.8B-expo", | |
"VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct", | |
"Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B", | |
"AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5", | |
"mlabonne/Daredevil-8B-abliterated": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated", | |
"ENERGY-DRINK-LOVE/eeve_dpo-v3": "https://huggingface.co/ENERGY-DRINK-LOVE/eeve_dpo-v3", | |
"migtissera/Trinity-2-Codestral-22B": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B", | |
"Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B", | |
"mlabonne/Daredevil-8B-abliterated-dpomix": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated-dpomix", | |
"yanolja/EEVE-Korean-Instruct-10.8B-v1.0": "https://huggingface.co/yanolja/EEVE-Korean-Instruct-10.8B-v1.0", | |
"vicgalle/Configurable-Llama-3.1-8B-Instruct": "https://huggingface.co/vicgalle/Configurable-Llama-3.1-8B-Instruct", | |
"T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0", | |
"Eurdem/Defne-llama3.1-8B": "https://huggingface.co/Eurdem/Defne-llama3.1-8B", | |
"BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B", | |
"BAAI/Infinity-Instruct-3M-0625-Llama3-8B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Llama3-8B", | |
"T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0", | |
"BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B", | |
"mightbe/EEVE-10.8B-Multiturn": "https://huggingface.co/mightbe/EEVE-10.8B-Multiturn", | |
"hyemijo/omed-llama3.1-8b": "https://huggingface.co/hyemijo/omed-llama3.1-8b", | |
"yanolja/Bookworm-10.7B-v0.4-DPO": "https://huggingface.co/yanolja/Bookworm-10.7B-v0.4-DPO", | |
"algograp-Inc/algograpV4": "https://huggingface.co/algograp-Inc/algograpV4", | |
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75", | |
"chihoonlee10/T3Q-LLM-MG-DPO-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-DPO-v1.0", | |
"vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B": "https://huggingface.co/vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B", | |
"RLHFlow/LLaMA3-iterative-DPO-final": "https://huggingface.co/RLHFlow/LLaMA3-iterative-DPO-final", | |
"SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx": "https://huggingface.co/SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx", | |
"spow12/Ko-Qwen2-7B-Instruct": "https://huggingface.co/spow12/Ko-Qwen2-7B-Instruct", | |
"BAAI/Infinity-Instruct-3M-0625-Qwen2-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Qwen2-7B", | |
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half", | |
"T3Q-LLM/T3Q-LLM1-CV-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v2.0", | |
"migtissera/Trinity-2-Codestral-22B-v0.2": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B-v0.2", | |
"sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval": "https://huggingface.co/sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval", | |
"MaziyarPanahi/Llama-3-8B-Instruct-v0.10": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.10", | |
"MaziyarPanahi/Llama-3-8B-Instruct-v0.9": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.9", | |
"zhengr/MixTAO-7Bx2-MoE-v8.1": "https://huggingface.co/zhengr/MixTAO-7Bx2-MoE-v8.1", | |
"TIGER-Lab/MAmmoTH2-8B-Plus": "https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus", | |
"OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k": "https://huggingface.co/OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k", | |
"haoranxu/Llama-3-Instruct-8B-CPO-SimPO": "https://huggingface.co/haoranxu/Llama-3-Instruct-8B-CPO-SimPO", | |
"Weyaxi/Einstein-v7-Qwen2-7B": "https://huggingface.co/Weyaxi/Einstein-v7-Qwen2-7B", | |
"DKYoon/kosolar-hermes-test": "https://huggingface.co/DKYoon/kosolar-hermes-test", | |
"vilm/Quyen-Pro-v0.1": "https://huggingface.co/vilm/Quyen-Pro-v0.1", | |
"chihoonlee10/T3Q-LLM-MG-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-v1.0", | |
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25", | |
"ai-human-lab/EEVE-Korean-10.8B-RAFT": "https://huggingface.co/ai-human-lab/EEVE-Korean-10.8B-RAFT", | |
"princeton-nlp/Llama-3-Base-8B-SFT-RDPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-RDPO", | |
"MaziyarPanahi/Llama-3-8B-Instruct-v0.8": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.8", | |
"chihoonlee10/T3Q-ko-solar-dpo-v7.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v7.0", | |
"jondurbin/bagel-8b-v1.0": "https://huggingface.co/jondurbin/bagel-8b-v1.0", | |
"DeepMount00/Llama-3-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3-8b-Ita", | |
"VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct", | |
"princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2", | |
"AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5", | |
"princeton-nlp/Llama-3-Base-8B-SFT-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-KTO", | |
"maywell/Mini_Synatra_SFT": "https://huggingface.co/maywell/Mini_Synatra_SFT", | |
"princeton-nlp/Llama-3-Base-8B-SFT-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-ORPO", | |
"princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2", | |
"spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat": "https://huggingface.co/spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat", | |
"princeton-nlp/Llama-3-Base-8B-SFT-DPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-DPO", | |
"princeton-nlp/Llama-3-Instruct-8B-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO", | |
"lcw99/llama-3-10b-it-kor-extented-chang": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang", | |
"migtissera/Llama-3-8B-Synthia-v3.5": "https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5", | |
"megastudyedu/M-SOLAR-10.7B-v1.4-dpo": "https://huggingface.co/megastudyedu/M-SOLAR-10.7B-v1.4-dpo", | |
"T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0", | |
"maywell/Synatra-10.7B-v0.4": "https://huggingface.co/maywell/Synatra-10.7B-v0.4", | |
"nlpai-lab/KULLM3": "https://huggingface.co/nlpai-lab/KULLM3", | |
"abacusai/Llama-3-Smaug-8B": "https://huggingface.co/abacusai/Llama-3-Smaug-8B", | |
"gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1", | |
"BAAI/Infinity-Instruct-3M-0625-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Mistral-7B", | |
"openchat/openchat_3.5": "https://huggingface.co/openchat/openchat_3.5", | |
"T3Q-LLM/T3Q-LLM1-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-v2.0", | |
"T3Q-LLM/T3Q-LLM1-CV-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v1.0", | |
"ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1", | |
"macadeliccc/Samantha-Qwen-2-7B": "https://huggingface.co/macadeliccc/Samantha-Qwen-2-7B", | |
"openchat/openchat-3.5-0106": "https://huggingface.co/openchat/openchat-3.5-0106", | |
"NousResearch/Nous-Hermes-2-SOLAR-10.7B": "https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B", | |
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1", | |
"MTSAIR/multi_verse_model": "https://huggingface.co/MTSAIR/multi_verse_model", | |
"gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0", | |
"VIRNECT/llama-3-Korean-8B": "https://huggingface.co/VIRNECT/llama-3-Korean-8B", | |
"ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3": "https://huggingface.co/ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3", | |
"SeaLLMs/SeaLLMs-v3-7B-Chat": "https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat", | |
"VIRNECT/llama-3-Korean-8B-V2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-V2", | |
"MLP-KTLim/llama-3-Korean-Bllossom-8B": "https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B", | |
"Magpie-Align/Llama-3-8B-Magpie-Align-v0.3": "https://huggingface.co/Magpie-Align/Llama-3-8B-Magpie-Align-v0.3", | |
"cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2": "https://huggingface.co/cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2", | |
"SkyOrbis/SKY-Ko-Llama3-8B-lora": "https://huggingface.co/SkyOrbis/SKY-Ko-Llama3-8B-lora", | |
"4yo1/llama3-eng-ko-8b-sl5": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl5", | |
"kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39": "https://huggingface.co/kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39", | |
"ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2", | |
"lcw99/llama-3-10b-it-kor-extented-chang-pro8": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang-pro8", | |
"BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B", | |
"migtissera/Tess-2.0-Llama-3-8B": "https://huggingface.co/migtissera/Tess-2.0-Llama-3-8B", | |
"BAAI/Infinity-Instruct-3M-0613-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0613-Mistral-7B", | |
"yeonwoo780/cydinfo-llama3-8b-lora-v01": "https://huggingface.co/yeonwoo780/cydinfo-llama3-8b-lora-v01", | |
"vicgalle/ConfigurableSOLAR-10.7B": "https://huggingface.co/vicgalle/ConfigurableSOLAR-10.7B", | |
"chihoonlee10/T3Q-ko-solar-jo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-jo-v1.0", | |
"Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4": "https://huggingface.co/Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4", | |
"Edentns/DataVortexS-10.7B-dpo-v1.0": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.0", | |
"SJ-Donald/SJ-SOLAR-10.7b-DPO": "https://huggingface.co/SJ-Donald/SJ-SOLAR-10.7b-DPO", | |
"lemon-mint/gemma-ko-7b-it-v0.40": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.40", | |
"GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3": "https://huggingface.co/GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3", | |
"hyeogi/SOLAR-10.7B-v1.5": "https://huggingface.co/hyeogi/SOLAR-10.7B-v1.5", | |
"etri-xainlp/llama3-8b-dpo_v1": "https://huggingface.co/etri-xainlp/llama3-8b-dpo_v1", | |
"LDCC/LDCC-SOLAR-10.7B": "https://huggingface.co/LDCC/LDCC-SOLAR-10.7B", | |
"chlee10/T3Q-Llama3-8B-Inst-sft1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-Inst-sft1.0", | |
"lemon-mint/gemma-ko-7b-it-v0.41": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.41", | |
"chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0", | |
"maywell/Synatra-7B-Instruct-v0.3-pre": "https://huggingface.co/maywell/Synatra-7B-Instruct-v0.3-pre", | |
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2", | |
"hwkwon/S-SOLAR-10.7B-v1.4": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.4" | |
} | |
def get_models_data(progress=gr.Progress()): | |
"""๋ชจ๋ธ ๋ฐ์ดํฐ ๊ฐ์ ธ์ค๊ธฐ""" | |
url = "https://huggingface.co/api/models" | |
params = { | |
'full': 'true', | |
'limit': 300 # ์คํ์ด์ค์ ๋์ผํ๊ฒ 300๊ฐ๋ก ์ค์ | |
} | |
try: | |
progress(0, desc="Fetching models data...") | |
response = requests.get(url, params=params) | |
if response.status_code != 200: | |
print(f"API ์์ฒญ ์คํจ: {response.status_code}") | |
print(f"Response: {response.text}") | |
print(f"URL: {url}") | |
return create_error_plot(), "<div>๋ชจ๋ธ ๋ฐ์ดํฐ๋ฅผ ๊ฐ์ ธ์ค๋๋ฐ ์คํจํ์ต๋๋ค.</div>", pd.DataFrame() | |
all_models = response.json() | |
# target_models์ ์๋ ๋ชจ๋ธ๋ง ํํฐ๋ง | |
filtered_models = [] | |
for model in all_models: | |
if model.get('id', '') in target_models: | |
model['rank'] = len(filtered_models) + 1 | |
filtered_models.append(model) | |
if not filtered_models: | |
return create_error_plot(), "<div>์ ํ๋ ๋ชจ๋ธ์ ๋ฐ์ดํฐ๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค.</div>", pd.DataFrame() | |
progress(0.3, desc="Creating visualization...") | |
# ์๊ฐํ ์์ฑ | |
fig = go.Figure() | |
# ๋ฐ์ดํฐ ์ค๋น | |
ids = [model['id'] for model in filtered_models] | |
ranks = [model['rank'] for model in filtered_models] | |
likes = [model.get('likes', 0) for model in filtered_models] | |
# Y์ถ ๊ฐ์ ๋ฐ์ (300 - rank + 1) | |
y_values = [301 - r for r in ranks] | |
# ๋ง๋ ๊ทธ๋ํ ์์ฑ | |
fig.add_trace(go.Bar( | |
x=ids, | |
y=y_values, | |
text=[f"Rank: {r}<br>Likes: {l}" for r, l in zip(ranks, likes)], | |
textposition='auto', | |
marker_color='rgb(158,202,225)', | |
opacity=0.8 | |
)) | |
fig.update_layout( | |
title={ | |
'text': 'Hugging Face Models Rankings (Top 300)', | |
'y':0.95, | |
'x':0.5, | |
'xanchor': 'center', | |
'yanchor': 'top' | |
}, | |
xaxis_title='Model ID', | |
yaxis_title='Rank', | |
yaxis=dict( | |
ticktext=[str(i) for i in range(1, 301, 20)], | |
tickvals=[301 - i for i in range(1, 301, 20)], | |
range=[0, 300] | |
), | |
height=800, | |
showlegend=False, | |
template='plotly_white', | |
xaxis_tickangle=-45 | |
) | |
progress(0.6, desc="Creating model cards...") | |
# HTML ์นด๋ ์์ฑ | |
html_content = """ | |
<div style='padding: 20px; background: #f5f5f5;'> | |
<h2 style='color: #2c3e50;'>Models Rankings</h2> | |
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'> | |
""" | |
for model in filtered_models: | |
model_id = model.get('id', '') | |
rank = model.get('rank', 'N/A') | |
likes = model.get('likes', 0) | |
downloads = model.get('downloads', 0) | |
html_content += f""" | |
<div style=' | |
background: white; | |
padding: 20px; | |
border-radius: 10px; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
transition: transform 0.2s; | |
'> | |
<h3 style='color: #34495e;'>Rank #{rank} - {model_id}</h3> | |
<p style='color: #7f8c8d;'>๐ Likes: {likes}</p> | |
<p style='color: #7f8c8d;'>โฌ๏ธ Downloads: {downloads}</p> | |
<a href='{target_models[model_id]}' | |
target='_blank' | |
style=' | |
display: inline-block; | |
padding: 8px 16px; | |
background: #3498db; | |
color: white; | |
text-decoration: none; | |
border-radius: 5px; | |
transition: background 0.3s; | |
'> | |
Visit Model ๐ | |
</a> | |
</div> | |
""" | |
html_content += "</div></div>" | |
# ๋ฐ์ดํฐํ๋ ์ ์์ฑ | |
df = pd.DataFrame([{ | |
'Rank': model.get('rank', 'N/A'), | |
'Model ID': model.get('id', ''), | |
'Likes': model.get('likes', 'N/A'), | |
'Downloads': model.get('downloads', 'N/A'), | |
'URL': target_models[model.get('id', '')] | |
} for model in filtered_models]) | |
progress(1.0, desc="Complete!") | |
return fig, html_content, df | |
except Exception as e: | |
print(f"Error in get_models_data: {str(e)}") | |
return create_error_plot(), f"<div>์๋ฌ ๋ฐ์: {str(e)}</div>", pd.DataFrame() | |
# ๊ด์ฌ ์คํ์ด์ค URL ๋ฆฌ์คํธ์ ์ ๋ณด | |
target_spaces = { | |
"ginipick/FLUXllama": "https://huggingface.co/spaces/ginipick/FLUXllama", | |
"ginipick/SORA-3D": "https://huggingface.co/spaces/ginipick/SORA-3D", | |
"fantaxy/Sound-AI-SFX": "https://huggingface.co/spaces/fantaxy/Sound-AI-SFX", | |
"fantos/flx8lora": "https://huggingface.co/spaces/fantos/flx8lora", | |
"ginigen/Canvas": "https://huggingface.co/spaces/ginigen/Canvas", | |
"fantaxy/erotica": "https://huggingface.co/spaces/fantaxy/erotica", | |
"ginipick/time-machine": "https://huggingface.co/spaces/ginipick/time-machine", | |
"aiqcamp/FLUX-VisionReply": "https://huggingface.co/spaces/aiqcamp/FLUX-VisionReply", | |
"openfree/Tetris-Game": "https://huggingface.co/spaces/openfree/Tetris-Game", | |
"openfree/everychat": "https://huggingface.co/spaces/openfree/everychat", | |
"VIDraft/mouse1": "https://huggingface.co/spaces/VIDraft/mouse1", | |
"kolaslab/alpha-go": "https://huggingface.co/spaces/kolaslab/alpha-go", | |
"ginipick/text3d": "https://huggingface.co/spaces/ginipick/text3d", | |
"openfree/trending-board": "https://huggingface.co/spaces/openfree/trending-board", | |
"cutechicken/tankwar": "https://huggingface.co/spaces/cutechicken/tankwar", | |
"openfree/game-jewel": "https://huggingface.co/spaces/openfree/game-jewel", | |
"VIDraft/mouse-chat": "https://huggingface.co/spaces/VIDraft/mouse-chat", | |
"ginipick/AccDiffusion": "https://huggingface.co/spaces/ginipick/AccDiffusion", | |
"aiqtech/Particle-Accelerator-Simulation": "https://huggingface.co/spaces/aiqtech/Particle-Accelerator-Simulation", | |
"openfree/GiniGEN": "https://huggingface.co/spaces/openfree/GiniGEN", | |
"kolaslab/3DAudio-Spectrum-Analyzer": "https://huggingface.co/spaces/kolaslab/3DAudio-Spectrum-Analyzer", | |
"openfree/trending-news-24": "https://huggingface.co/spaces/openfree/trending-news-24", | |
"ginipick/Realtime-FLUX": "https://huggingface.co/spaces/ginipick/Realtime-FLUX", | |
"VIDraft/prime-number": "https://huggingface.co/spaces/VIDraft/prime-number", | |
"kolaslab/zombie-game": "https://huggingface.co/spaces/kolaslab/zombie-game", | |
"fantos/miro-game": "https://huggingface.co/spaces/fantos/miro-game", | |
"kolaslab/shooting": "https://huggingface.co/spaces/kolaslab/shooting", | |
"VIDraft/Mouse-Hackathon": "https://huggingface.co/spaces/VIDraft/Mouse-Hackathon", | |
"upstage/open-ko-llm-leaderboard": "https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard", | |
"LGAI-EXAONE/EXAONE-3.5-Instruct-Demo": "https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.5-Instruct-Demo", | |
"NCSOFT/VARCO_Arena": "https://huggingface.co/spaces/NCSOFT/VARCO_Arena" | |
} | |
def get_spaces_data(sort_type="trending", progress=gr.Progress()): | |
"""์คํ์ด์ค ๋ฐ์ดํฐ ๊ฐ์ ธ์ค๊ธฐ (trending ๋๋ modes)""" | |
url = f"https://huggingface.co/api/spaces" | |
params = { | |
'full': 'true', | |
'limit': 300 | |
} | |
if sort_type == "modes": | |
params['sort'] = 'likes' # modes๋ ์ข์์ ์์ผ๋ก ์ ๋ ฌ | |
try: | |
progress(0, desc=f"Fetching {sort_type} spaces data...") | |
response = requests.get(url, params=params) | |
response.raise_for_status() | |
all_spaces = response.json() | |
# ์์ ์ ๋ณด ์ ์ฅ | |
space_ranks = {space['id']: idx + 1 for idx, space in enumerate(all_spaces)} | |
# target_spaces ํํฐ๋ง ๋ฐ ์์ ์ ๋ณด ํฌํจ | |
spaces = [] | |
for space in all_spaces: | |
if space.get('id', '') in target_spaces: | |
space['rank'] = space_ranks.get(space['id'], 'N/A') | |
spaces.append(space) | |
# ์์๋ณ๋ก ์ ๋ ฌ | |
spaces.sort(key=lambda x: x['rank']) | |
progress(0.3, desc="Creating visualization...") | |
# ์๊ฐํ ์์ฑ | |
fig = go.Figure() | |
# ๋ฐ์ดํฐ ์ค๋น | |
ids = [space['id'] for space in spaces] | |
ranks = [space['rank'] for space in spaces] | |
likes = [space.get('likes', 0) for space in spaces] | |
# Y์ถ ๊ฐ์ ๋ฐ์ (300 - rank + 1) | |
y_values = [301 - r for r in ranks] # ์์๋ฅผ ๋ฐ์ ๋ ๊ฐ์ผ๋ก ๋ณํ | |
# ๋ง๋ ๊ทธ๋ํ ์์ฑ | |
fig.add_trace(go.Bar( | |
x=ids, | |
y=y_values, | |
text=[f"Rank: {r}<br>Likes: {l}" for r, l in zip(ranks, likes)], | |
textposition='auto', | |
marker_color='rgb(158,202,225)', | |
opacity=0.8 | |
)) | |
fig.update_layout( | |
title={ | |
'text': f'Hugging Face Spaces {sort_type.title()} Rankings (Top 300)', | |
'y':0.95, | |
'x':0.5, | |
'xanchor': 'center', | |
'yanchor': 'top' | |
}, | |
xaxis_title='Space ID', | |
yaxis_title='Rank', | |
yaxis=dict( | |
ticktext=[str(i) for i in range(1, 301, 20)], # 1๋ถํฐ 300๊น์ง 20 ๊ฐ๊ฒฉ | |
tickvals=[301 - i for i in range(1, 301, 20)], # ๋ฐ์ ๋ ๊ฐ | |
range=[0, 300] # y์ถ ๋ฒ์ ์ค์ | |
), | |
height=800, | |
showlegend=False, | |
template='plotly_white', | |
xaxis_tickangle=-45 | |
) | |
progress(0.6, desc="Creating space cards...") | |
# HTML ์นด๋ ์์ฑ | |
html_content = f""" | |
<div style='padding: 20px; background: #f5f5f5;'> | |
<h2 style='color: #2c3e50;'>{sort_type.title()} Rankings</h2> | |
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'> | |
""" | |
for space in spaces: | |
space_id = space.get('id', '') | |
rank = space.get('rank', 'N/A') | |
likes = space.get('likes', 0) | |
title = space.get('title', 'No Title') | |
description = space.get('description', 'No Description')[:100] | |
html_content += f""" | |
<div style=' | |
background: white; | |
padding: 20px; | |
border-radius: 10px; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
transition: transform 0.2s; | |
'> | |
<h3 style='color: #34495e;'>Rank #{rank} - {space_id}</h3> | |
<p style='color: #7f8c8d;'>๐ Likes: {likes}</p> | |
<p style='color: #2c3e50;'>{title}</p> | |
<p style='color: #7f8c8d; font-size: 0.9em;'>{description}...</p> | |
<a href='{target_spaces[space_id]}' | |
target='_blank' | |
style=' | |
display: inline-block; | |
padding: 8px 16px; | |
background: #3498db; | |
color: white; | |
text-decoration: none; | |
border-radius: 5px; | |
transition: background 0.3s; | |
'> | |
Visit Space ๐ | |
</a> | |
</div> | |
""" | |
html_content += "</div></div>" | |
# ๋ฐ์ดํฐํ๋ ์ ์์ฑ | |
df = pd.DataFrame([{ | |
'Rank': space.get('rank', 'N/A'), | |
'Space ID': space.get('id', ''), | |
'Likes': space.get('likes', 'N/A'), | |
'Title': space.get('title', 'N/A'), | |
'URL': target_spaces[space.get('id', '')] | |
} for space in spaces]) | |
progress(1.0, desc="Complete!") | |
return fig, html_content, df | |
except Exception as e: | |
error_html = f'<div style="color: red; padding: 20px;">Error: {str(e)}</div>' | |
error_plot = create_error_plot() | |
return error_plot, error_html, pd.DataFrame() | |
def create_trend_visualization(spaces_data): | |
if not spaces_data: | |
return create_error_plot() | |
fig = go.Figure() | |
# ์์ ๋ฐ์ดํฐ ์ค๋น | |
ranks = [] | |
for idx, space in enumerate(spaces_data, 1): | |
space_id = space.get('id', '') | |
if space_id in target_spaces: | |
ranks.append({ | |
'id': space_id, | |
'rank': idx, | |
'likes': space.get('likes', 0), | |
'title': space.get('title', 'N/A'), | |
'views': space.get('views', 0) | |
}) | |
if not ranks: | |
return create_error_plot() | |
# ์์๋ณ๋ก ์ ๋ ฌ | |
ranks.sort(key=lambda x: x['rank']) | |
# ํ๋กฏ ๋ฐ์ดํฐ ์์ฑ | |
ids = [r['id'] for r in ranks] | |
rank_values = [r['rank'] for r in ranks] | |
likes = [r['likes'] for r in ranks] | |
views = [r['views'] for r in ranks] | |
# ๋ง๋ ๊ทธ๋ํ ์์ฑ | |
fig.add_trace(go.Bar( | |
x=ids, | |
y=rank_values, | |
text=[f"Rank: {r}<br>Likes: {l}<br>Views: {v}" for r, l, v in zip(rank_values, likes, views)], | |
textposition='auto', | |
marker_color='rgb(158,202,225)', | |
opacity=0.8 | |
)) | |
fig.update_layout( | |
title={ | |
'text': 'Current Trending Ranks (All Target Spaces)', | |
'y':0.95, | |
'x':0.5, | |
'xanchor': 'center', | |
'yanchor': 'top' | |
}, | |
xaxis_title='Space ID', | |
yaxis_title='Trending Rank', | |
yaxis_autorange='reversed', | |
height=800, | |
showlegend=False, | |
template='plotly_white', | |
xaxis_tickangle=-45 | |
) | |
return fig | |
# ํ ํฐ์ด ์๋ ๊ฒฝ์ฐ๋ฅผ ์ํ ๋์ฒด ํจ์ | |
def get_trending_spaces_without_token(): | |
try: | |
url = "https://huggingface.co/api/spaces" | |
params = { | |
'sort': 'likes', | |
'direction': -1, | |
'limit': 1000, | |
'full': 'true' | |
} | |
response = requests.get(url, params=params) | |
if response.status_code == 200: | |
return response.json() | |
else: | |
print(f"API ์์ฒญ ์คํจ (ํ ํฐ ์์): {response.status_code}") | |
print(f"Response: {response.text}") | |
return None | |
except Exception as e: | |
print(f"API ํธ์ถ ์ค ์๋ฌ ๋ฐ์ (ํ ํฐ ์์): {str(e)}") | |
return None | |
# API ํ ํฐ ์ค์ ๋ฐ ํจ์ ์ ํ | |
if not HF_TOKEN: | |
get_trending_spaces = get_trending_spaces_without_token | |
def create_error_plot(): | |
fig = go.Figure() | |
fig.add_annotation( | |
text="๋ฐ์ดํฐ๋ฅผ ๋ถ๋ฌ์ฌ ์ ์์ต๋๋ค.\n(API ์ธ์ฆ์ด ํ์ํฉ๋๋ค)", | |
xref="paper", | |
yref="paper", | |
x=0.5, | |
y=0.5, | |
showarrow=False, | |
font=dict(size=20) | |
) | |
fig.update_layout( | |
title="Error Loading Data", | |
height=400 | |
) | |
return fig | |
def create_space_info_html(spaces_data): | |
if not spaces_data: | |
return "<div style='padding: 20px;'><h2>๋ฐ์ดํฐ๋ฅผ ๋ถ๋ฌ์ค๋๋ฐ ์คํจํ์ต๋๋ค.</h2></div>" | |
html_content = """ | |
<div style='padding: 20px;'> | |
<h2 style='color: #2c3e50;'>Current Trending Rankings</h2> | |
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'> | |
""" | |
# ๋ชจ๋ target spaces๋ฅผ ํฌํจํ๋๋ก ์์ | |
for space_id in target_spaces.keys(): | |
space_info = next((s for s in spaces_data if s.get('id') == space_id), None) | |
if space_info: | |
rank = next((idx for idx, s in enumerate(spaces_data, 1) if s.get('id') == space_id), 'N/A') | |
html_content += f""" | |
<div style=' | |
background: white; | |
padding: 20px; | |
border-radius: 10px; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
transition: transform 0.2s; | |
'> | |
<h3 style='color: #34495e;'>#{rank} - {space_id}</h3> | |
<p style='color: #7f8c8d;'>๐ Likes: {space_info.get('likes', 'N/A')}</p> | |
<p style='color: #7f8c8d;'>๐ Views: {space_info.get('views', 'N/A')}</p> | |
<p style='color: #2c3e50;'>{space_info.get('title', 'N/A')}</p> | |
<p style='color: #7f8c8d; font-size: 0.9em;'>{space_info.get('description', 'N/A')[:100]}...</p> | |
<a href='{target_spaces[space_id]}' | |
target='_blank' | |
style=' | |
display: inline-block; | |
padding: 8px 16px; | |
background: #3498db; | |
color: white; | |
text-decoration: none; | |
border-radius: 5px; | |
transition: background 0.3s; | |
'> | |
Visit Space ๐ | |
</a> | |
</div> | |
""" | |
else: | |
html_content += f""" | |
<div style=' | |
background: #f8f9fa; | |
padding: 20px; | |
border-radius: 10px; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
'> | |
<h3 style='color: #34495e;'>{space_id}</h3> | |
<p style='color: #7f8c8d;'>Not in trending</p> | |
<a href='{target_spaces[space_id]}' | |
target='_blank' | |
style=' | |
display: inline-block; | |
padding: 8px 16px; | |
background: #95a5a6; | |
color: white; | |
text-decoration: none; | |
border-radius: 5px; | |
'> | |
Visit Space ๐ | |
</a> | |
</div> | |
""" | |
html_content += "</div></div>" | |
return html_content | |
def create_data_table(spaces_data): | |
if not spaces_data: | |
return pd.DataFrame() | |
rows = [] | |
for idx, space in enumerate(spaces_data, 1): | |
space_id = space.get('id', '') | |
if space_id in target_spaces: | |
rows.append({ | |
'Rank': idx, | |
'Space ID': space_id, | |
'Likes': space.get('likes', 'N/A'), | |
'Title': space.get('title', 'N/A'), | |
'URL': target_spaces[space_id] | |
}) | |
return pd.DataFrame(rows) | |
def refresh_data(): | |
spaces_data = get_trending_spaces() | |
if spaces_data: | |
plot = create_trend_visualization(spaces_data) | |
info = create_space_info_html(spaces_data) | |
df = create_data_table(spaces_data) | |
return plot, info, df | |
else: | |
return create_error_plot(), "<div>API ์ธ์ฆ์ด ํ์ํฉ๋๋ค.</div>", pd.DataFrame() | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
# ๐ค ํ๊น ํ์ด์ค 'ํ๊ตญ ๋ฆฌ๋๋ณด๋' | |
์ค์๊ฐ์ผ๋ก Hugging Face์ Spaces์ Models ์ธ๊ธฐ ์์๋ฅผ ๋ถ์ํฉ๋๋ค. ์ ๊ท ๋ฑ๋ก ์์ฒญ: arxivgpt@gmail.com | |
""") | |
with gr.Tab("Spaces Trending"): | |
trending_plot = gr.Plot() | |
trending_info = gr.HTML() | |
trending_df = gr.DataFrame() | |
with gr.Tab("Models Trending"): | |
models_plot = gr.Plot() | |
models_info = gr.HTML() | |
models_df = gr.DataFrame() | |
refresh_btn = gr.Button("๐ Refresh Data", variant="primary") | |
def refresh_all_data(): | |
spaces_results = get_spaces_data("trending") | |
models_results = get_models_data() | |
return [*spaces_results, *models_results] | |
refresh_btn.click( | |
refresh_all_data, | |
outputs=[ | |
trending_plot, trending_info, trending_df, | |
models_plot, models_info, models_df | |
] | |
) | |
# ์ด๊ธฐ ๋ฐ์ดํฐ ๋ก๋ | |
spaces_results = get_spaces_data("trending") | |
models_results = get_models_data() | |
trending_plot.value, trending_info.value, trending_df.value = spaces_results | |
models_plot.value, models_info.value, models_df.value = models_results | |
# Gradio ์ฑ ์คํ | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False | |
) |