Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -1,949 +1,2 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import requests
|
3 |
-
import pandas as pd
|
4 |
-
import plotly.graph_objects as go
|
5 |
-
from datetime import datetime
|
6 |
import os
|
7 |
-
|
8 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
9 |
-
|
10 |
-
target_models = {
|
11 |
-
"openfree/flux-lora-korea-palace": "https://huggingface.co/openfree/flux-lora-korea-palace",
|
12 |
-
"seawolf2357/hanbok": "https://huggingface.co/seawolf2357/hanbok",
|
13 |
-
"LGAI-EXAONE/EXAONE-3.5-32B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-32B-Instruct",
|
14 |
-
"LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct",
|
15 |
-
"LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct",
|
16 |
-
"ginipick/flux-lora-eric-cat": "https://huggingface.co/ginipick/flux-lora-eric-cat",
|
17 |
-
"seawolf2357/flux-lora-car-rolls-royce": "https://huggingface.co/seawolf2357/flux-lora-car-rolls-royce",
|
18 |
-
|
19 |
-
"moreh/Llama-3-Motif-102B-Instruct": "https://huggingface.co/moreh/Llama-3-Motif-102B-Instruct",
|
20 |
-
"moreh/Llama-3-Motif-102B": "https://huggingface.co/moreh/Llama-3-Motif-102B",
|
21 |
-
"Samsung/TinyClick": "https://huggingface.co/Samsung/TinyClick",
|
22 |
-
|
23 |
-
"Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B",
|
24 |
-
"AALF/gemma-2-27b-it-SimPO-37K": "https://huggingface.co/AALF/gemma-2-27b-it-SimPO-37K",
|
25 |
-
"nbeerbower/mistral-nemo-wissenschaft-12B": "https://huggingface.co/nbeerbower/mistral-nemo-wissenschaft-12B",
|
26 |
-
"Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B",
|
27 |
-
"princeton-nlp/gemma-2-9b-it-SimPO": "https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO",
|
28 |
-
"migtissera/Tess-v2.5-Gemma-2-27B-alpha": "https://huggingface.co/migtissera/Tess-v2.5-Gemma-2-27B-alpha",
|
29 |
-
"DeepMount00/Llama-3.1-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3.1-8b-Ita",
|
30 |
-
"cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b": "https://huggingface.co/cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b",
|
31 |
-
"ai-human-lab/EEVE-Korean_Instruct-10.8B-expo": "https://huggingface.co/ai-human-lab/EEVE-Korean_Instruct-10.8B-expo",
|
32 |
-
"VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct",
|
33 |
-
"Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B",
|
34 |
-
"AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5",
|
35 |
-
"mlabonne/Daredevil-8B-abliterated": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated",
|
36 |
-
"ENERGY-DRINK-LOVE/eeve_dpo-v3": "https://huggingface.co/ENERGY-DRINK-LOVE/eeve_dpo-v3",
|
37 |
-
"migtissera/Trinity-2-Codestral-22B": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B",
|
38 |
-
"Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B",
|
39 |
-
"mlabonne/Daredevil-8B-abliterated-dpomix": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated-dpomix",
|
40 |
-
"yanolja/EEVE-Korean-Instruct-10.8B-v1.0": "https://huggingface.co/yanolja/EEVE-Korean-Instruct-10.8B-v1.0",
|
41 |
-
"vicgalle/Configurable-Llama-3.1-8B-Instruct": "https://huggingface.co/vicgalle/Configurable-Llama-3.1-8B-Instruct",
|
42 |
-
"T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0",
|
43 |
-
"Eurdem/Defne-llama3.1-8B": "https://huggingface.co/Eurdem/Defne-llama3.1-8B",
|
44 |
-
"BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B",
|
45 |
-
"BAAI/Infinity-Instruct-3M-0625-Llama3-8B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Llama3-8B",
|
46 |
-
"T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0",
|
47 |
-
"BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B",
|
48 |
-
"mightbe/EEVE-10.8B-Multiturn": "https://huggingface.co/mightbe/EEVE-10.8B-Multiturn",
|
49 |
-
"hyemijo/omed-llama3.1-8b": "https://huggingface.co/hyemijo/omed-llama3.1-8b",
|
50 |
-
"yanolja/Bookworm-10.7B-v0.4-DPO": "https://huggingface.co/yanolja/Bookworm-10.7B-v0.4-DPO",
|
51 |
-
"algograp-Inc/algograpV4": "https://huggingface.co/algograp-Inc/algograpV4",
|
52 |
-
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75",
|
53 |
-
"chihoonlee10/T3Q-LLM-MG-DPO-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-DPO-v1.0",
|
54 |
-
"vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B": "https://huggingface.co/vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B",
|
55 |
-
"RLHFlow/LLaMA3-iterative-DPO-final": "https://huggingface.co/RLHFlow/LLaMA3-iterative-DPO-final",
|
56 |
-
"SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx": "https://huggingface.co/SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx",
|
57 |
-
"spow12/Ko-Qwen2-7B-Instruct": "https://huggingface.co/spow12/Ko-Qwen2-7B-Instruct",
|
58 |
-
"BAAI/Infinity-Instruct-3M-0625-Qwen2-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Qwen2-7B",
|
59 |
-
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half",
|
60 |
-
"T3Q-LLM/T3Q-LLM1-CV-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v2.0",
|
61 |
-
"migtissera/Trinity-2-Codestral-22B-v0.2": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B-v0.2",
|
62 |
-
"sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval": "https://huggingface.co/sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval",
|
63 |
-
"MaziyarPanahi/Llama-3-8B-Instruct-v0.10": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.10",
|
64 |
-
"MaziyarPanahi/Llama-3-8B-Instruct-v0.9": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.9",
|
65 |
-
"zhengr/MixTAO-7Bx2-MoE-v8.1": "https://huggingface.co/zhengr/MixTAO-7Bx2-MoE-v8.1",
|
66 |
-
"TIGER-Lab/MAmmoTH2-8B-Plus": "https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus",
|
67 |
-
"OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k": "https://huggingface.co/OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k",
|
68 |
-
"haoranxu/Llama-3-Instruct-8B-CPO-SimPO": "https://huggingface.co/haoranxu/Llama-3-Instruct-8B-CPO-SimPO",
|
69 |
-
"Weyaxi/Einstein-v7-Qwen2-7B": "https://huggingface.co/Weyaxi/Einstein-v7-Qwen2-7B",
|
70 |
-
"DKYoon/kosolar-hermes-test": "https://huggingface.co/DKYoon/kosolar-hermes-test",
|
71 |
-
"vilm/Quyen-Pro-v0.1": "https://huggingface.co/vilm/Quyen-Pro-v0.1",
|
72 |
-
"chihoonlee10/T3Q-LLM-MG-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-v1.0",
|
73 |
-
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25",
|
74 |
-
"ai-human-lab/EEVE-Korean-10.8B-RAFT": "https://huggingface.co/ai-human-lab/EEVE-Korean-10.8B-RAFT",
|
75 |
-
"princeton-nlp/Llama-3-Base-8B-SFT-RDPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-RDPO",
|
76 |
-
"MaziyarPanahi/Llama-3-8B-Instruct-v0.8": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.8",
|
77 |
-
"chihoonlee10/T3Q-ko-solar-dpo-v7.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v7.0",
|
78 |
-
"jondurbin/bagel-8b-v1.0": "https://huggingface.co/jondurbin/bagel-8b-v1.0",
|
79 |
-
"DeepMount00/Llama-3-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3-8b-Ita",
|
80 |
-
"VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
|
81 |
-
"princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2",
|
82 |
-
"AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5",
|
83 |
-
"princeton-nlp/Llama-3-Base-8B-SFT-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-KTO",
|
84 |
-
"maywell/Mini_Synatra_SFT": "https://huggingface.co/maywell/Mini_Synatra_SFT",
|
85 |
-
"princeton-nlp/Llama-3-Base-8B-SFT-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-ORPO",
|
86 |
-
"princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2",
|
87 |
-
"spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat": "https://huggingface.co/spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat",
|
88 |
-
"princeton-nlp/Llama-3-Base-8B-SFT-DPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-DPO",
|
89 |
-
"princeton-nlp/Llama-3-Instruct-8B-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO",
|
90 |
-
"lcw99/llama-3-10b-it-kor-extented-chang": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang",
|
91 |
-
"migtissera/Llama-3-8B-Synthia-v3.5": "https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5",
|
92 |
-
"megastudyedu/M-SOLAR-10.7B-v1.4-dpo": "https://huggingface.co/megastudyedu/M-SOLAR-10.7B-v1.4-dpo",
|
93 |
-
"T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0",
|
94 |
-
"maywell/Synatra-10.7B-v0.4": "https://huggingface.co/maywell/Synatra-10.7B-v0.4",
|
95 |
-
"nlpai-lab/KULLM3": "https://huggingface.co/nlpai-lab/KULLM3",
|
96 |
-
"abacusai/Llama-3-Smaug-8B": "https://huggingface.co/abacusai/Llama-3-Smaug-8B",
|
97 |
-
"gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1",
|
98 |
-
"BAAI/Infinity-Instruct-3M-0625-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Mistral-7B",
|
99 |
-
"openchat/openchat_3.5": "https://huggingface.co/openchat/openchat_3.5",
|
100 |
-
"T3Q-LLM/T3Q-LLM1-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-v2.0",
|
101 |
-
"T3Q-LLM/T3Q-LLM1-CV-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v1.0",
|
102 |
-
"ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1",
|
103 |
-
"macadeliccc/Samantha-Qwen-2-7B": "https://huggingface.co/macadeliccc/Samantha-Qwen-2-7B",
|
104 |
-
"openchat/openchat-3.5-0106": "https://huggingface.co/openchat/openchat-3.5-0106",
|
105 |
-
"NousResearch/Nous-Hermes-2-SOLAR-10.7B": "https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B",
|
106 |
-
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1",
|
107 |
-
"MTSAIR/multi_verse_model": "https://huggingface.co/MTSAIR/multi_verse_model",
|
108 |
-
"gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0",
|
109 |
-
"VIRNECT/llama-3-Korean-8B": "https://huggingface.co/VIRNECT/llama-3-Korean-8B",
|
110 |
-
"ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3": "https://huggingface.co/ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3",
|
111 |
-
"SeaLLMs/SeaLLMs-v3-7B-Chat": "https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat",
|
112 |
-
"VIRNECT/llama-3-Korean-8B-V2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-V2",
|
113 |
-
"MLP-KTLim/llama-3-Korean-Bllossom-8B": "https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B",
|
114 |
-
"Magpie-Align/Llama-3-8B-Magpie-Align-v0.3": "https://huggingface.co/Magpie-Align/Llama-3-8B-Magpie-Align-v0.3",
|
115 |
-
"cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2": "https://huggingface.co/cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2",
|
116 |
-
"SkyOrbis/SKY-Ko-Llama3-8B-lora": "https://huggingface.co/SkyOrbis/SKY-Ko-Llama3-8B-lora",
|
117 |
-
"4yo1/llama3-eng-ko-8b-sl5": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl5",
|
118 |
-
"kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39": "https://huggingface.co/kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39",
|
119 |
-
"ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2",
|
120 |
-
"lcw99/llama-3-10b-it-kor-extented-chang-pro8": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang-pro8",
|
121 |
-
"BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B",
|
122 |
-
"migtissera/Tess-2.0-Llama-3-8B": "https://huggingface.co/migtissera/Tess-2.0-Llama-3-8B",
|
123 |
-
"BAAI/Infinity-Instruct-3M-0613-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0613-Mistral-7B",
|
124 |
-
"yeonwoo780/cydinfo-llama3-8b-lora-v01": "https://huggingface.co/yeonwoo780/cydinfo-llama3-8b-lora-v01",
|
125 |
-
"vicgalle/ConfigurableSOLAR-10.7B": "https://huggingface.co/vicgalle/ConfigurableSOLAR-10.7B",
|
126 |
-
"chihoonlee10/T3Q-ko-solar-jo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-jo-v1.0",
|
127 |
-
"Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4": "https://huggingface.co/Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4",
|
128 |
-
"Edentns/DataVortexS-10.7B-dpo-v1.0": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.0",
|
129 |
-
"SJ-Donald/SJ-SOLAR-10.7b-DPO": "https://huggingface.co/SJ-Donald/SJ-SOLAR-10.7b-DPO",
|
130 |
-
"lemon-mint/gemma-ko-7b-it-v0.40": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.40",
|
131 |
-
"GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3": "https://huggingface.co/GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3",
|
132 |
-
"hyeogi/SOLAR-10.7B-v1.5": "https://huggingface.co/hyeogi/SOLAR-10.7B-v1.5",
|
133 |
-
"etri-xainlp/llama3-8b-dpo_v1": "https://huggingface.co/etri-xainlp/llama3-8b-dpo_v1",
|
134 |
-
"LDCC/LDCC-SOLAR-10.7B": "https://huggingface.co/LDCC/LDCC-SOLAR-10.7B",
|
135 |
-
"chlee10/T3Q-Llama3-8B-Inst-sft1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-Inst-sft1.0",
|
136 |
-
"lemon-mint/gemma-ko-7b-it-v0.41": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.41",
|
137 |
-
"chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0",
|
138 |
-
"maywell/Synatra-7B-Instruct-v0.3-pre": "https://huggingface.co/maywell/Synatra-7B-Instruct-v0.3-pre",
|
139 |
-
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2",
|
140 |
-
"hwkwon/S-SOLAR-10.7B-v1.4": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.4",
|
141 |
-
"12thD/ko-Llama-3-8B-sft-v0.3": "https://huggingface.co/12thD/ko-Llama-3-8B-sft-v0.3",
|
142 |
-
"hkss/hk-SOLAR-10.7B-v1.4": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.4",
|
143 |
-
"lookuss/test-llilu": "https://huggingface.co/lookuss/test-llilu",
|
144 |
-
"chihoonlee10/T3Q-ko-solar-dpo-v3.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v3.0",
|
145 |
-
"chihoonlee10/T3Q-ko-solar-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v1.0",
|
146 |
-
"lcw99/llama-3-10b-wiki-240709-f": "https://huggingface.co/lcw99/llama-3-10b-wiki-240709-f",
|
147 |
-
"Edentns/DataVortexS-10.7B-v0.4": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.4",
|
148 |
-
"princeton-nlp/Llama-3-Instruct-8B-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-KTO",
|
149 |
-
"spow12/kosolar_4.1_sft": "https://huggingface.co/spow12/kosolar_4.1_sft",
|
150 |
-
"natong19/Qwen2-7B-Instruct-abliterated": "https://huggingface.co/natong19/Qwen2-7B-Instruct-abliterated",
|
151 |
-
"megastudyedu/ME-dpo-7B-v1.1": "https://huggingface.co/megastudyedu/ME-dpo-7B-v1.1",
|
152 |
-
"01-ai/Yi-1.5-9B-Chat-16K": "https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K",
|
153 |
-
"Edentns/DataVortexS-10.7B-dpo-v0.1": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v0.1",
|
154 |
-
"Alphacode-AI/AlphaMist7B-slr-v4-slow": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v4-slow",
|
155 |
-
"chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0",
|
156 |
-
"hwkwon/S-SOLAR-10.7B-v1.1": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.1",
|
157 |
-
"DopeorNope/Dear_My_best_Friends-13B": "https://huggingface.co/DopeorNope/Dear_My_best_Friends-13B",
|
158 |
-
"GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2": "https://huggingface.co/GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2",
|
159 |
-
"PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct": "https://huggingface.co/PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct",
|
160 |
-
"vicgalle/ConfigurableHermes-7B": "https://huggingface.co/vicgalle/ConfigurableHermes-7B",
|
161 |
-
"maywell/PiVoT-10.7B-Mistral-v0.2": "https://huggingface.co/maywell/PiVoT-10.7B-Mistral-v0.2",
|
162 |
-
"failspy/Meta-Llama-3-8B-Instruct-abliterated-v3": "https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3",
|
163 |
-
"lemon-mint/gemma-ko-7b-instruct-v0.50": "https://huggingface.co/lemon-mint/gemma-ko-7b-instruct-v0.50",
|
164 |
-
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT",
|
165 |
-
"maywell/PiVoT-0.1-early": "https://huggingface.co/maywell/PiVoT-0.1-early",
|
166 |
-
"hwkwon/S-SOLAR-10.7B-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.3",
|
167 |
-
"werty1248/Llama-3-Ko-8B-Instruct-AOG": "https://huggingface.co/werty1248/Llama-3-Ko-8B-Instruct-AOG",
|
168 |
-
"Alphacode-AI/AlphaMist7B-slr-v2": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v2",
|
169 |
-
"maywell/koOpenChat-sft": "https://huggingface.co/maywell/koOpenChat-sft",
|
170 |
-
"lemon-mint/gemma-7b-openhermes-v0.80": "https://huggingface.co/lemon-mint/gemma-7b-openhermes-v0.80",
|
171 |
-
"VIRNECT/llama-3-Korean-8B-r-v1": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v1",
|
172 |
-
"Alphacode-AI/AlphaMist7B-slr-v1": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v1",
|
173 |
-
"Loyola/Mistral-7b-ITmodel": "https://huggingface.co/Loyola/Mistral-7b-ITmodel",
|
174 |
-
"VIRNECT/llama-3-Korean-8B-r-v2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v2",
|
175 |
-
"NLPark/AnFeng_v3.1-Avocet": "https://huggingface.co/NLPark/AnFeng_v3.1-Avocet",
|
176 |
-
"maywell/Synatra_TbST11B_EP01": "https://huggingface.co/maywell/Synatra_TbST11B_EP01",
|
177 |
-
"GritLM/GritLM-7B-KTO": "https://huggingface.co/GritLM/GritLM-7B-KTO",
|
178 |
-
"01-ai/Yi-34B-Chat": "https://huggingface.co/01-ai/Yi-34B-Chat",
|
179 |
-
"ValiantLabs/Llama3.1-8B-ShiningValiant2": "https://huggingface.co/ValiantLabs/Llama3.1-8B-ShiningValiant2",
|
180 |
-
"princeton-nlp/Llama-3-Base-8B-SFT-CPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-CPO",
|
181 |
-
"hyokwan/hkcode_llama3_8b": "https://huggingface.co/hyokwan/hkcode_llama3_8b",
|
182 |
-
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3",
|
183 |
-
"yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0": "https://huggingface.co/yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0",
|
184 |
-
"juungwon/Llama-3-cs-LoRA": "https://huggingface.co/juungwon/Llama-3-cs-LoRA",
|
185 |
-
"gangyeolkim/llama-3-chat": "https://huggingface.co/gangyeolkim/llama-3-chat",
|
186 |
-
"mncai/llama2-13b-dpo-v3": "https://huggingface.co/mncai/llama2-13b-dpo-v3",
|
187 |
-
"maywell/Synatra-Zephyr-7B-v0.01": "https://huggingface.co/maywell/Synatra-Zephyr-7B-v0.01",
|
188 |
-
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT",
|
189 |
-
"juungwon/Llama-3-constructionsafety-LoRA": "https://huggingface.co/juungwon/Llama-3-constructionsafety-LoRA",
|
190 |
-
"princeton-nlp/Mistral-7B-Base-SFT-SimPO": "https://huggingface.co/princeton-nlp/Mistral-7B-Base-SFT-SimPO",
|
191 |
-
"moondriller/solar10B-eugeneparkthebestv2": "https://huggingface.co/moondriller/solar10B-eugeneparkthebestv2",
|
192 |
-
"chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0",
|
193 |
-
"Edentns/DataVortexS-10.7B-dpo-v1.7": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.7",
|
194 |
-
"gamzadole/llama3_instruct_tuning_without_pretraing": "https://huggingface.co/gamzadole/llama3_instruct_tuning_without_pretraing",
|
195 |
-
"saltlux/Ko-Llama3-Luxia-8B": "https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B",
|
196 |
-
"kimdeokgi/ko-pt-model-test1": "https://huggingface.co/kimdeokgi/ko-pt-model-test1",
|
197 |
-
"maywell/Synatra-11B-Testbench-2": "https://huggingface.co/maywell/Synatra-11B-Testbench-2",
|
198 |
-
"Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO": "https://huggingface.co/Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO",
|
199 |
-
"vicgalle/Configurable-Mistral-7B": "https://huggingface.co/vicgalle/Configurable-Mistral-7B",
|
200 |
-
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT",
|
201 |
-
"beomi/Llama-3-Open-Ko-8B-Instruct-preview": "https://huggingface.co/beomi/Llama-3-Open-Ko-8B-Instruct-preview",
|
202 |
-
"Edentns/DataVortexS-10.7B-dpo-v1.3": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.3",
|
203 |
-
"spow12/Llama3_ko_4.2_sft": "https://huggingface.co/spow12/Llama3_ko_4.2_sft",
|
204 |
-
"maywell/Llama-3-Ko-8B-Instruct": "https://huggingface.co/maywell/Llama-3-Ko-8B-Instruct",
|
205 |
-
"T3Q-LLM/T3Q-LLM3-NC-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM3-NC-v1.0",
|
206 |
-
"ehartford/dolphin-2.2.1-mistral-7b": "https://huggingface.co/ehartford/dolphin-2.2.1-mistral-7b",
|
207 |
-
"hwkwon/S-SOLAR-10.7B-SFT-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-SFT-v1.3",
|
208 |
-
"sel303/llama3-instruct-diverce-v2.0": "https://huggingface.co/sel303/llama3-instruct-diverce-v2.0",
|
209 |
-
"4yo1/llama3-eng-ko-8b-sl3": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl3",
|
210 |
-
"hkss/hk-SOLAR-10.7B-v1.1": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.1",
|
211 |
-
"Open-Orca/Mistral-7B-OpenOrca": "https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca",
|
212 |
-
"hyokwan/familidata": "https://huggingface.co/hyokwan/familidata",
|
213 |
-
"uukuguy/zephyr-7b-alpha-dare-0.85": "https://huggingface.co/uukuguy/zephyr-7b-alpha-dare-0.85",
|
214 |
-
"gwonny/nox-solar-10.7b-v4-kolon-all-5": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-5",
|
215 |
-
"shleeeee/mistral-ko-tech-science-v1": "https://huggingface.co/shleeeee/mistral-ko-tech-science-v1",
|
216 |
-
"Deepnoid/deep-solar-eeve-KorSTS": "https://huggingface.co/Deepnoid/deep-solar-eeve-KorSTS",
|
217 |
-
"AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0": "https://huggingface.co/AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0",
|
218 |
-
"tlphams/gollm-tendency-45": "https://huggingface.co/tlphams/gollm-tendency-45",
|
219 |
-
"realPCH/ko_solra_merge": "https://huggingface.co/realPCH/ko_solra_merge",
|
220 |
-
"Cartinoe5930/original-KoRAE-13b": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b",
|
221 |
-
"GAI-LLM/Yi-Ko-6B-dpo-v5": "https://huggingface.co/GAI-LLM/Yi-Ko-6B-dpo-v5",
|
222 |
-
"Minirecord/Mini_DPO_test02": "https://huggingface.co/Minirecord/Mini_DPO_test02",
|
223 |
-
"AIJUUD/juud-Mistral-7B-dpo": "https://huggingface.co/AIJUUD/juud-Mistral-7B-dpo",
|
224 |
-
"gwonny/nox-solar-10.7b-v4-kolon-all-10": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-10",
|
225 |
-
"jieunhan/TEST_MODEL": "https://huggingface.co/jieunhan/TEST_MODEL",
|
226 |
-
"etri-xainlp/kor-llama2-13b-dpo": "https://huggingface.co/etri-xainlp/kor-llama2-13b-dpo",
|
227 |
-
"ifuseok/yi-ko-playtus-instruct-v0.2": "https://huggingface.co/ifuseok/yi-ko-playtus-instruct-v0.2",
|
228 |
-
"Cartinoe5930/original-KoRAE-13b-3ep": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b-3ep",
|
229 |
-
"Trofish/KULLM-RLHF": "https://huggingface.co/Trofish/KULLM-RLHF",
|
230 |
-
"wkshin89/Yi-Ko-6B-Instruct-v1.0": "https://huggingface.co/wkshin89/Yi-Ko-6B-Instruct-v1.0",
|
231 |
-
"momo/polyglot-ko-12.8b-Chat-QLoRA-Merge": "https://huggingface.co/momo/polyglot-ko-12.8b-Chat-QLoRA-Merge",
|
232 |
-
"PracticeLLM/Custom-KoLLM-13B-v5": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v5",
|
233 |
-
"BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B",
|
234 |
-
"MRAIRR/minillama3_8b_all": "https://huggingface.co/MRAIRR/minillama3_8b_all",
|
235 |
-
"failspy/Phi-3-medium-4k-instruct-abliterated-v3": "https://huggingface.co/failspy/Phi-3-medium-4k-instruct-abliterated-v3",
|
236 |
-
"DILAB-HYU/koquality-polyglot-12.8b": "https://huggingface.co/DILAB-HYU/koquality-polyglot-12.8b",
|
237 |
-
"kyujinpy/Korean-OpenOrca-v3": "https://huggingface.co/kyujinpy/Korean-OpenOrca-v3",
|
238 |
-
"4yo1/llama3-eng-ko-8b": "https://huggingface.co/4yo1/llama3-eng-ko-8b",
|
239 |
-
"4yo1/llama3-eng-ko-8": "https://huggingface.co/4yo1/llama3-eng-ko-8",
|
240 |
-
"4yo1/llama3-eng-ko-8-llama": "https://huggingface.co/4yo1/llama3-eng-ko-8-llama",
|
241 |
-
"PracticeLLM/Custom-KoLLM-13B-v2": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v2",
|
242 |
-
"kyujinpy/KOR-Orca-Platypus-13B-v2": "https://huggingface.co/kyujinpy/KOR-Orca-Platypus-13B-v2",
|
243 |
-
"ghost-x/ghost-7b-alpha": "https://huggingface.co/ghost-x/ghost-7b-alpha",
|
244 |
-
"HumanF-MarkrAI/pub-llama-13B-v6": "https://huggingface.co/HumanF-MarkrAI/pub-llama-13B-v6",
|
245 |
-
"nlpai-lab/kullm-polyglot-5.8b-v2": "https://huggingface.co/nlpai-lab/kullm-polyglot-5.8b-v2",
|
246 |
-
"maywell/Synatra-42dot-1.3B": "https://huggingface.co/maywell/Synatra-42dot-1.3B",
|
247 |
-
"yhkim9362/gemma-en-ko-7b-v0.1": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.1",
|
248 |
-
"yhkim9362/gemma-en-ko-7b-v0.2": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.2",
|
249 |
-
"daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B": "https://huggingface.co/daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B",
|
250 |
-
"beomi/Yi-Ko-6B": "https://huggingface.co/beomi/Yi-Ko-6B",
|
251 |
-
"jojo0217/ChatSKKU5.8B": "https://huggingface.co/jojo0217/ChatSKKU5.8B",
|
252 |
-
"Deepnoid/deep-solar-v2.0.7": "https://huggingface.co/Deepnoid/deep-solar-v2.0.7",
|
253 |
-
"01-ai/Yi-1.5-9B": "https://huggingface.co/01-ai/Yi-1.5-9B",
|
254 |
-
"PracticeLLM/Custom-KoLLM-13B-v4": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v4",
|
255 |
-
"nuebaek/komt_mistral_mss_user_0_max_steps_80": "https://huggingface.co/nuebaek/komt_mistral_mss_user_0_max_steps_80",
|
256 |
-
"dltjdgh0928/lsh_finetune_v0.11": "https://huggingface.co/dltjdgh0928/lsh_finetune_v0.11",
|
257 |
-
"shleeeee/mistral-7b-wiki": "https://huggingface.co/shleeeee/mistral-7b-wiki",
|
258 |
-
"nayohan/polyglot-ko-5.8b-Inst": "https://huggingface.co/nayohan/polyglot-ko-5.8b-Inst",
|
259 |
-
"ifuseok/sft-solar-10.7b-v1.1": "https://huggingface.co/ifuseok/sft-solar-10.7b-v1.1",
|
260 |
-
"Junmai/KIT-5.8b": "https://huggingface.co/Junmai/KIT-5.8b",
|
261 |
-
"heegyu/polyglot-ko-3.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-3.8b-chat",
|
262 |
-
"etri-xainlp/polyglot-ko-12.8b-instruct": "https://huggingface.co/etri-xainlp/polyglot-ko-12.8b-instruct",
|
263 |
-
"OpenBuddy/openbuddy-mistral2-7b-v20.3-32k": "https://huggingface.co/OpenBuddy/openbuddy-mistral2-7b-v20.3-32k",
|
264 |
-
"sh2orc/Llama-3-Korean-8B": "https://huggingface.co/sh2orc/Llama-3-Korean-8B",
|
265 |
-
"Deepnoid/deep-solar-eeve-v2.0.0": "https://huggingface.co/Deepnoid/deep-solar-eeve-v2.0.0",
|
266 |
-
"Herry443/Mistral-7B-KNUT-ref": "https://huggingface.co/Herry443/Mistral-7B-KNUT-ref",
|
267 |
-
"heegyu/polyglot-ko-5.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-5.8b-chat",
|
268 |
-
"jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3": "https://huggingface.co/jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3",
|
269 |
-
"DILAB-HYU/KoQuality-Polyglot-5.8b": "https://huggingface.co/DILAB-HYU/KoQuality-Polyglot-5.8b",
|
270 |
-
"Byungchae/k2s3_test_0000": "https://huggingface.co/Byungchae/k2s3_test_0000",
|
271 |
-
"migtissera/Tess-v2.5-Phi-3-medium-128k-14B": "https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B",
|
272 |
-
"kyujinpy/Korean-OpenOrca-13B": "https://huggingface.co/kyujinpy/Korean-OpenOrca-13B",
|
273 |
-
"kyujinpy/KO-Platypus2-13B": "https://huggingface.co/kyujinpy/KO-Platypus2-13B",
|
274 |
-
"jin05102518/Astral-7B-Instruct-v0.01": "https://huggingface.co/jin05102518/Astral-7B-Instruct-v0.01",
|
275 |
-
"Byungchae/k2s3_test_0002": "https://huggingface.co/Byungchae/k2s3_test_0002",
|
276 |
-
"NousResearch/Nous-Hermes-llama-2-7b": "https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b",
|
277 |
-
"kaist-ai/prometheus-13b-v1.0": "https://huggingface.co/kaist-ai/prometheus-13b-v1.0",
|
278 |
-
"sel303/llama3-diverce-ver1.0": "https://huggingface.co/sel303/llama3-diverce-ver1.0",
|
279 |
-
"NousResearch/Nous-Capybara-7B": "https://huggingface.co/NousResearch/Nous-Capybara-7B",
|
280 |
-
"rrw-x2/KoSOLAR-10.7B-DPO-v1.0": "https://huggingface.co/rrw-x2/KoSOLAR-10.7B-DPO-v1.0",
|
281 |
-
"Edentns/DataVortexS-10.7B-v0.2": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.2",
|
282 |
-
"Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6": "https://huggingface.co/Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6",
|
283 |
-
"tlphams/gollm-instruct-all-in-one-v1": "https://huggingface.co/tlphams/gollm-instruct-all-in-one-v1",
|
284 |
-
"Edentns/DataVortexTL-1.1B-v0.1": "https://huggingface.co/Edentns/DataVortexTL-1.1B-v0.1",
|
285 |
-
"richard-park/llama3-pre1-ds": "https://huggingface.co/richard-park/llama3-pre1-ds",
|
286 |
-
"ehartford/samantha-1.1-llama-33b": "https://huggingface.co/ehartford/samantha-1.1-llama-33b",
|
287 |
-
"heegyu/LIMA-13b-hf": "https://huggingface.co/heegyu/LIMA-13b-hf",
|
288 |
-
"heegyu/42dot_LLM-PLM-1.3B-mt": "https://huggingface.co/heegyu/42dot_LLM-PLM-1.3B-mt",
|
289 |
-
"shleeeee/mistral-ko-7b-wiki-neft": "https://huggingface.co/shleeeee/mistral-ko-7b-wiki-neft",
|
290 |
-
"EleutherAI/polyglot-ko-1.3b": "https://huggingface.co/EleutherAI/polyglot-ko-1.3b",
|
291 |
-
"kyujinpy/Ko-PlatYi-6B-gu": "https://huggingface.co/kyujinpy/Ko-PlatYi-6B-gu",
|
292 |
-
"sel303/llama3-diverce-ver1.6": "https://huggingface.co/sel303/llama3-diverce-ver1.6"
|
293 |
-
}
|
294 |
-
|
295 |
-
|
296 |
-
def get_models_data(progress=gr.Progress()):
|
297 |
-
"""모델 데이터 가져오기"""
|
298 |
-
def normalize_model_id(model_id):
|
299 |
-
"""모델 ID를 정규화"""
|
300 |
-
return model_id.strip().lower()
|
301 |
-
|
302 |
-
url = "https://huggingface.co/api/models"
|
303 |
-
|
304 |
-
try:
|
305 |
-
progress(0, desc="Fetching models data...")
|
306 |
-
params = {
|
307 |
-
'full': 'true',
|
308 |
-
'limit': 3000, # 3000개로 증가
|
309 |
-
'sort': 'trending',
|
310 |
-
'direction': -1
|
311 |
-
}
|
312 |
-
|
313 |
-
headers = {'Accept': 'application/json'}
|
314 |
-
|
315 |
-
response = requests.get(url, params=params, headers=headers)
|
316 |
-
if response.status_code != 200:
|
317 |
-
print(f"API 요청 실패: {response.status_code}")
|
318 |
-
print(f"Response: {response.text}")
|
319 |
-
return create_error_plot(), "<div>모델 데이터를 가져오는데 실패했습니다.</div>", pd.DataFrame()
|
320 |
-
|
321 |
-
models = response.json()
|
322 |
-
|
323 |
-
# 전체 순위 정보 저장 (다운로드 수 기준)
|
324 |
-
model_ranks = {}
|
325 |
-
model_data = {} # 모든 모델의 상세 데이터 저장
|
326 |
-
|
327 |
-
for idx, model in enumerate(models, 1):
|
328 |
-
model_id = normalize_model_id(model.get('id', ''))
|
329 |
-
model_data[model_id] = {
|
330 |
-
'rank': idx,
|
331 |
-
'downloads': model.get('downloads', 0),
|
332 |
-
'likes': model.get('likes', 0),
|
333 |
-
'title': model.get('title', 'No Title')
|
334 |
-
}
|
335 |
-
|
336 |
-
# target_models 중 순위권 내 모델 필터링
|
337 |
-
filtered_models = []
|
338 |
-
for target_id in target_models.keys():
|
339 |
-
normalized_target_id = normalize_model_id(target_id)
|
340 |
-
|
341 |
-
# 먼저 전체 순위에서 찾기
|
342 |
-
if normalized_target_id in model_data:
|
343 |
-
model_info = {
|
344 |
-
'id': target_id,
|
345 |
-
'rank': model_data[normalized_target_id]['rank'],
|
346 |
-
'downloads': model_data[normalized_target_id]['downloads'],
|
347 |
-
'likes': model_data[normalized_target_id]['likes'],
|
348 |
-
'title': model_data[normalized_target_id]['title']
|
349 |
-
}
|
350 |
-
else:
|
351 |
-
# 순위권 밖의 모델은 개별 API 호출로 정보 가져오기
|
352 |
-
try:
|
353 |
-
model_url = f"https://huggingface.co/api/models/{target_id}"
|
354 |
-
model_response = requests.get(model_url, headers=headers)
|
355 |
-
if model_response.status_code == 200:
|
356 |
-
model_info = model_response.json()
|
357 |
-
model_info['id'] = target_id
|
358 |
-
model_info['rank'] = 'Not in top 3000'
|
359 |
-
else:
|
360 |
-
model_info = {
|
361 |
-
'id': target_id,
|
362 |
-
'rank': 'Not in top 3000',
|
363 |
-
'downloads': 0,
|
364 |
-
'likes': 0,
|
365 |
-
'title': 'No Title'
|
366 |
-
}
|
367 |
-
except Exception as e:
|
368 |
-
print(f"Error fetching data for model {target_id}: {str(e)}")
|
369 |
-
model_info = {
|
370 |
-
'id': target_id,
|
371 |
-
'rank': 'Not in top 3000',
|
372 |
-
'downloads': 0,
|
373 |
-
'likes': 0,
|
374 |
-
'title': 'No Title'
|
375 |
-
}
|
376 |
-
|
377 |
-
filtered_models.append(model_info)
|
378 |
-
|
379 |
-
# 순위로 정렬 (순위가 숫자인 경우만)
|
380 |
-
filtered_models.sort(key=lambda x: (
|
381 |
-
float('inf') if x['rank'] == 'Not in top 3000' else x['rank']
|
382 |
-
))
|
383 |
-
|
384 |
-
if not filtered_models:
|
385 |
-
return create_error_plot(), "<div>선택된 모델의 데이터를 찾을 수 없습니다.</div>", pd.DataFrame()
|
386 |
-
|
387 |
-
progress(0.3, desc="Creating visualization...")
|
388 |
-
|
389 |
-
# 시각화 생성
|
390 |
-
fig = go.Figure()
|
391 |
-
|
392 |
-
# 데이터 준비
|
393 |
-
ids = [model['id'] for model in filtered_models]
|
394 |
-
ranks = [model['rank'] for model in filtered_models]
|
395 |
-
likes = [model['likes'] for model in filtered_models]
|
396 |
-
downloads = [model['downloads'] for model in filtered_models]
|
397 |
-
|
398 |
-
# Y축 값을 반전 (숫자 순위만)
|
399 |
-
y_values = [3001 - r if isinstance(r, int) else 0 for r in ranks]
|
400 |
-
|
401 |
-
# 막대 그래프 생성
|
402 |
-
fig.add_trace(go.Bar(
|
403 |
-
x=ids,
|
404 |
-
y=y_values,
|
405 |
-
text=[f"Global Rank: {r}<br>Likes: {l:,}<br>Downloads: {d:,}"
|
406 |
-
for r, l, d in zip(ranks, likes, downloads)],
|
407 |
-
textposition='auto',
|
408 |
-
marker_color='rgb(158,202,225)',
|
409 |
-
opacity=0.8
|
410 |
-
))
|
411 |
-
|
412 |
-
fig.update_layout(
|
413 |
-
title={
|
414 |
-
'text': 'Hugging Face Models Global Download Rankings (Top 3000)',
|
415 |
-
'y':0.95,
|
416 |
-
'x':0.5,
|
417 |
-
'xanchor': 'center',
|
418 |
-
'yanchor': 'top'
|
419 |
-
},
|
420 |
-
xaxis_title='Model ID',
|
421 |
-
yaxis_title='Global Rank',
|
422 |
-
yaxis=dict(
|
423 |
-
ticktext=[str(i) for i in range(1, 3001, 150)],
|
424 |
-
tickvals=[3001 - i for i in range(1, 3001, 150)],
|
425 |
-
range=[0, 3000]
|
426 |
-
),
|
427 |
-
height=800,
|
428 |
-
showlegend=False,
|
429 |
-
template='plotly_white',
|
430 |
-
xaxis_tickangle=-45
|
431 |
-
)
|
432 |
-
|
433 |
-
progress(0.6, desc="Creating model cards...")
|
434 |
-
|
435 |
-
# HTML 카드 생성
|
436 |
-
html_content = """
|
437 |
-
<div style='padding: 20px; background: #f5f5f5;'>
|
438 |
-
<h2 style='color: #2c3e50;'>Models Global Download Rankings (Top 3000)</h2>
|
439 |
-
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
|
440 |
-
"""
|
441 |
-
|
442 |
-
# 순위권 내 모델 카드 생성
|
443 |
-
for model in filtered_models:
|
444 |
-
model_id = model['id']
|
445 |
-
rank = model['rank']
|
446 |
-
likes = model.get('likes', 0)
|
447 |
-
downloads = model.get('downloads', 0)
|
448 |
-
title = model.get('title', 'No Title')
|
449 |
-
|
450 |
-
html_content += f"""
|
451 |
-
<div style='
|
452 |
-
background: white;
|
453 |
-
padding: 20px;
|
454 |
-
border-radius: 10px;
|
455 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
456 |
-
transition: transform 0.2s;
|
457 |
-
'>
|
458 |
-
<h3 style='color: #34495e;'>Global Rank #{rank} - {model_id}</h3>
|
459 |
-
<p style='color: #2c3e50;'>{title}</p>
|
460 |
-
<p style='color: #7f8c8d;'>👍 Likes: {likes:,}</p>
|
461 |
-
<p style='color: #7f8c8d;'>⬇️ Downloads: {downloads:,}</p>
|
462 |
-
<a href='{target_models[model_id]}'
|
463 |
-
target='_blank'
|
464 |
-
style='
|
465 |
-
display: inline-block;
|
466 |
-
padding: 8px 16px;
|
467 |
-
background: #3498db;
|
468 |
-
color: white;
|
469 |
-
text-decoration: none;
|
470 |
-
border-radius: 5px;
|
471 |
-
transition: background 0.3s;
|
472 |
-
'>
|
473 |
-
Visit Model 🔗
|
474 |
-
</a>
|
475 |
-
</div>
|
476 |
-
"""
|
477 |
-
|
478 |
-
html_content += "</div></div>"
|
479 |
-
|
480 |
-
# 데이터프레임 생성
|
481 |
-
df_data = []
|
482 |
-
# 모든 모델 정보를 데이터프레임에 추가
|
483 |
-
for model in filtered_models:
|
484 |
-
df_data.append({
|
485 |
-
'Global Rank': model['rank'],
|
486 |
-
'Model ID': model['id'],
|
487 |
-
'Title': model.get('title', 'No Title'),
|
488 |
-
'Likes': f"{model.get('likes', 0):,}",
|
489 |
-
'Downloads': f"{model.get('downloads', 0):,}",
|
490 |
-
'URL': target_models[model['id']]
|
491 |
-
})
|
492 |
-
|
493 |
-
df = pd.DataFrame(df_data)
|
494 |
-
|
495 |
-
progress(1.0, desc="Complete!")
|
496 |
-
return fig, html_content, df
|
497 |
-
|
498 |
-
except Exception as e:
|
499 |
-
print(f"Error in get_models_data: {str(e)}")
|
500 |
-
return create_error_plot(), f"<div>에러 발생: {str(e)}</div>", pd.DataFrame()
|
501 |
-
|
502 |
-
# 관심 스페이스 URL 리스트와 정보
|
503 |
-
target_spaces = {
|
504 |
-
|
505 |
-
"openfree/Korean-Leaderboard": "https://huggingface.co/spaces/openfree/Korean-Leaderboard",
|
506 |
-
"ginipick/FLUXllama": "https://huggingface.co/spaces/ginipick/FLUXllama",
|
507 |
-
"ginipick/SORA-3D": "https://huggingface.co/spaces/ginipick/SORA-3D",
|
508 |
-
"fantaxy/Sound-AI-SFX": "https://huggingface.co/spaces/fantaxy/Sound-AI-SFX",
|
509 |
-
"fantos/flx8lora": "https://huggingface.co/spaces/fantos/flx8lora",
|
510 |
-
"ginigen/Canvas": "https://huggingface.co/spaces/ginigen/Canvas",
|
511 |
-
"fantaxy/erotica": "https://huggingface.co/spaces/fantaxy/erotica",
|
512 |
-
"ginipick/time-machine": "https://huggingface.co/spaces/ginipick/time-machine",
|
513 |
-
"aiqcamp/FLUX-VisionReply": "https://huggingface.co/spaces/aiqcamp/FLUX-VisionReply",
|
514 |
-
"openfree/Tetris-Game": "https://huggingface.co/spaces/openfree/Tetris-Game",
|
515 |
-
"openfree/everychat": "https://huggingface.co/spaces/openfree/everychat",
|
516 |
-
"VIDraft/mouse1": "https://huggingface.co/spaces/VIDraft/mouse1",
|
517 |
-
"kolaslab/alpha-go": "https://huggingface.co/spaces/kolaslab/alpha-go",
|
518 |
-
"ginipick/text3d": "https://huggingface.co/spaces/ginipick/text3d",
|
519 |
-
"openfree/trending-board": "https://huggingface.co/spaces/openfree/trending-board",
|
520 |
-
"cutechicken/tankwar": "https://huggingface.co/spaces/cutechicken/tankwar",
|
521 |
-
"openfree/game-jewel": "https://huggingface.co/spaces/openfree/game-jewel",
|
522 |
-
"VIDraft/mouse-chat": "https://huggingface.co/spaces/VIDraft/mouse-chat",
|
523 |
-
"ginipick/AccDiffusion": "https://huggingface.co/spaces/ginipick/AccDiffusion",
|
524 |
-
"aiqtech/Particle-Accelerator-Simulation": "https://huggingface.co/spaces/aiqtech/Particle-Accelerator-Simulation",
|
525 |
-
"openfree/GiniGEN": "https://huggingface.co/spaces/openfree/GiniGEN",
|
526 |
-
"kolaslab/3DAudio-Spectrum-Analyzer": "https://huggingface.co/spaces/kolaslab/3DAudio-Spectrum-Analyzer",
|
527 |
-
"openfree/trending-news-24": "https://huggingface.co/spaces/openfree/trending-news-24",
|
528 |
-
"ginipick/Realtime-FLUX": "https://huggingface.co/spaces/ginipick/Realtime-FLUX",
|
529 |
-
"VIDraft/prime-number": "https://huggingface.co/spaces/VIDraft/prime-number",
|
530 |
-
"kolaslab/zombie-game": "https://huggingface.co/spaces/kolaslab/zombie-game",
|
531 |
-
"fantos/miro-game": "https://huggingface.co/spaces/fantos/miro-game",
|
532 |
-
"kolaslab/shooting": "https://huggingface.co/spaces/kolaslab/shooting",
|
533 |
-
"VIDraft/Mouse-Hackathon": "https://huggingface.co/spaces/VIDraft/Mouse-Hackathon",
|
534 |
-
"upstage/open-ko-llm-leaderboard": "https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard",
|
535 |
-
"LGAI-EXAONE/EXAONE-3.5-Instruct-Demo": "https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.5-Instruct-Demo",
|
536 |
-
|
537 |
-
"cutechicken/TankWar3D": "https://huggingface.co/spaces/cutechicken/TankWar3D",
|
538 |
-
"kolaslab/RC4-EnDecoder": "https://huggingface.co/spaces/kolaslab/RC4-EnDecoder",
|
539 |
-
"kolaslab/simulator": "https://huggingface.co/spaces/kolaslab/simulator",
|
540 |
-
"kolaslab/calculator": "https://huggingface.co/spaces/kolaslab/calculator",
|
541 |
-
"etri-vilab/Ko-LLaVA": "https://huggingface.co/spaces/etri-vilab/Ko-LLaVA",
|
542 |
-
"etri-vilab/KOALA": "https://huggingface.co/spaces/etri-vilab/KOALA",
|
543 |
-
"naver-clova-ix/donut-base-finetuned-cord-v2": "https://huggingface.co/spaces/naver-clova-ix/donut-base-finetuned-cord-v2",
|
544 |
-
|
545 |
-
"NCSOFT/VARCO_Arena": "https://huggingface.co/spaces/NCSOFT/VARCO_Arena"
|
546 |
-
}
|
547 |
-
|
548 |
-
def get_spaces_data(sort_type="trending", progress=gr.Progress()):
|
549 |
-
"""스페이스 데이터 가져오기 (trending 또는 modes)"""
|
550 |
-
url = "https://huggingface.co/api/spaces"
|
551 |
-
params = {
|
552 |
-
'full': 'true',
|
553 |
-
'limit': 300
|
554 |
-
}
|
555 |
-
|
556 |
-
if sort_type == "modes":
|
557 |
-
params['sort'] = 'likes'
|
558 |
-
|
559 |
-
try:
|
560 |
-
progress(0, desc=f"Fetching {sort_type} spaces data...")
|
561 |
-
response = requests.get(url, params=params)
|
562 |
-
response.raise_for_status()
|
563 |
-
all_spaces = response.json()
|
564 |
-
|
565 |
-
# 순위 정보 저장
|
566 |
-
space_ranks = {}
|
567 |
-
for idx, space in enumerate(all_spaces, 1):
|
568 |
-
space_id = space.get('id', '')
|
569 |
-
if space_id in target_spaces:
|
570 |
-
space['rank'] = idx
|
571 |
-
space_ranks[space_id] = space
|
572 |
-
|
573 |
-
spaces = [space_ranks[space_id] for space_id in space_ranks.keys()]
|
574 |
-
spaces.sort(key=lambda x: x['rank'])
|
575 |
-
|
576 |
-
progress(0.3, desc="Creating visualization...")
|
577 |
-
|
578 |
-
# 시각화 생성
|
579 |
-
fig = go.Figure()
|
580 |
-
|
581 |
-
# 데이터 준비
|
582 |
-
ids = [space['id'] for space in spaces]
|
583 |
-
ranks = [space['rank'] for space in spaces]
|
584 |
-
likes = [space.get('likes', 0) for space in spaces]
|
585 |
-
titles = [space.get('cardData', {}).get('title') or space.get('title', 'No Title') for space in spaces]
|
586 |
-
|
587 |
-
# Y축 값을 반전
|
588 |
-
y_values = [301 - r for r in ranks]
|
589 |
-
|
590 |
-
# 막대 그래프 생성
|
591 |
-
fig.add_trace(go.Bar(
|
592 |
-
x=ids,
|
593 |
-
y=y_values,
|
594 |
-
text=[f"Rank: {r}<br>Title: {t}<br>Likes: {l}"
|
595 |
-
for r, t, l in zip(ranks, titles, likes)],
|
596 |
-
textposition='auto',
|
597 |
-
marker_color='rgb(158,202,225)',
|
598 |
-
opacity=0.8
|
599 |
-
))
|
600 |
-
|
601 |
-
fig.update_layout(
|
602 |
-
title={
|
603 |
-
'text': f'Hugging Face Spaces {sort_type.title()} Rankings (Top 300)',
|
604 |
-
'y':0.95,
|
605 |
-
'x':0.5,
|
606 |
-
'xanchor': 'center',
|
607 |
-
'yanchor': 'top'
|
608 |
-
},
|
609 |
-
xaxis_title='Space ID',
|
610 |
-
yaxis_title='Rank',
|
611 |
-
yaxis=dict(
|
612 |
-
ticktext=[str(i) for i in range(1, 301, 20)],
|
613 |
-
tickvals=[301 - i for i in range(1, 301, 20)],
|
614 |
-
range=[0, 300]
|
615 |
-
),
|
616 |
-
height=800,
|
617 |
-
showlegend=False,
|
618 |
-
template='plotly_white',
|
619 |
-
xaxis_tickangle=-45
|
620 |
-
)
|
621 |
-
|
622 |
-
progress(0.6, desc="Creating space cards...")
|
623 |
-
|
624 |
-
# HTML 카드 생성
|
625 |
-
html_content = f"""
|
626 |
-
<div style='padding: 20px; background: #f5f5f5;'>
|
627 |
-
<h2 style='color: #2c3e50;'>{sort_type.title()} Rankings</h2>
|
628 |
-
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
|
629 |
-
"""
|
630 |
-
|
631 |
-
for space in spaces:
|
632 |
-
space_id = space['id']
|
633 |
-
rank = space['rank']
|
634 |
-
title = space.get('cardData', {}).get('title') or space.get('title', 'No Title')
|
635 |
-
likes = space.get('likes', 0)
|
636 |
-
|
637 |
-
# 스페이스 함수의 HTML 카드 생성 부분 수정
|
638 |
-
html_content += f"""
|
639 |
-
<div style='
|
640 |
-
background: white;
|
641 |
-
padding: 20px;
|
642 |
-
border-radius: 10px;
|
643 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
644 |
-
transition: transform 0.2s;
|
645 |
-
'>
|
646 |
-
<h3 style='color: #34495e;'>Rank #{rank} - {space_id}</h3>
|
647 |
-
<h4 style='
|
648 |
-
color: #2980b9;
|
649 |
-
margin: 10px 0;
|
650 |
-
font-size: 1.2em;
|
651 |
-
font-weight: bold;
|
652 |
-
text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
|
653 |
-
background: linear-gradient(to right, #3498db, #2980b9);
|
654 |
-
-webkit-background-clip: text;
|
655 |
-
-webkit-text-fill-color: transparent;
|
656 |
-
padding: 5px 0;
|
657 |
-
'>{title}</h4>
|
658 |
-
<p style='color: #7f8c8d; margin-bottom: 10px;'>👍 Likes: {likes}</p>
|
659 |
-
<a href='{target_spaces[space_id]}'
|
660 |
-
target='_blank'
|
661 |
-
style='
|
662 |
-
display: inline-block;
|
663 |
-
padding: 8px 16px;
|
664 |
-
background: #3498db;
|
665 |
-
color: white;
|
666 |
-
text-decoration: none;
|
667 |
-
border-radius: 5px;
|
668 |
-
transition: background 0.3s;
|
669 |
-
'>
|
670 |
-
Visit Space 🔗
|
671 |
-
</a>
|
672 |
-
</div>
|
673 |
-
"""
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
html_content += "</div></div>"
|
678 |
-
|
679 |
-
# 데이터프레임 생성
|
680 |
-
df = pd.DataFrame([{
|
681 |
-
'Rank': space['rank'],
|
682 |
-
'Space ID': space['id'],
|
683 |
-
'Title': space.get('cardData', {}).get('title') or space.get('title', 'No Title'),
|
684 |
-
'Likes': space.get('likes', 0),
|
685 |
-
'URL': target_spaces[space['id']]
|
686 |
-
} for space in spaces])
|
687 |
-
|
688 |
-
progress(1.0, desc="Complete!")
|
689 |
-
return fig, html_content, df
|
690 |
-
|
691 |
-
except Exception as e:
|
692 |
-
print(f"Error in get_spaces_data: {str(e)}")
|
693 |
-
error_html = f'<div style="color: red; padding: 20px;">Error: {str(e)}</div>'
|
694 |
-
error_plot = create_error_plot()
|
695 |
-
return error_plot, error_html, pd.DataFrame()
|
696 |
-
|
697 |
-
|
698 |
-
def create_trend_visualization(spaces_data):
|
699 |
-
if not spaces_data:
|
700 |
-
return create_error_plot()
|
701 |
-
|
702 |
-
fig = go.Figure()
|
703 |
-
|
704 |
-
# 순위 데이터 준비
|
705 |
-
ranks = []
|
706 |
-
for idx, space in enumerate(spaces_data, 1):
|
707 |
-
space_id = space.get('id', '')
|
708 |
-
if space_id in target_spaces:
|
709 |
-
ranks.append({
|
710 |
-
'id': space_id,
|
711 |
-
'rank': idx,
|
712 |
-
'likes': space.get('likes', 0),
|
713 |
-
'title': space.get('title', 'N/A'),
|
714 |
-
'views': space.get('views', 0)
|
715 |
-
})
|
716 |
-
|
717 |
-
if not ranks:
|
718 |
-
return create_error_plot()
|
719 |
-
|
720 |
-
# 순위별로 정렬
|
721 |
-
ranks.sort(key=lambda x: x['rank'])
|
722 |
-
|
723 |
-
# 플롯 데이터 생성
|
724 |
-
ids = [r['id'] for r in ranks]
|
725 |
-
rank_values = [r['rank'] for r in ranks]
|
726 |
-
likes = [r['likes'] for r in ranks]
|
727 |
-
views = [r['views'] for r in ranks]
|
728 |
-
|
729 |
-
# 막대 그래프 생성
|
730 |
-
fig.add_trace(go.Bar(
|
731 |
-
x=ids,
|
732 |
-
y=rank_values,
|
733 |
-
text=[f"Rank: {r}<br>Likes: {l}<br>Views: {v}" for r, l, v in zip(rank_values, likes, views)],
|
734 |
-
textposition='auto',
|
735 |
-
marker_color='rgb(158,202,225)',
|
736 |
-
opacity=0.8
|
737 |
-
))
|
738 |
-
|
739 |
-
fig.update_layout(
|
740 |
-
title={
|
741 |
-
'text': 'Current Trending Ranks (All Target Spaces)',
|
742 |
-
'y':0.95,
|
743 |
-
'x':0.5,
|
744 |
-
'xanchor': 'center',
|
745 |
-
'yanchor': 'top'
|
746 |
-
},
|
747 |
-
xaxis_title='Space ID',
|
748 |
-
yaxis_title='Trending Rank',
|
749 |
-
yaxis_autorange='reversed',
|
750 |
-
height=800,
|
751 |
-
showlegend=False,
|
752 |
-
template='plotly_white',
|
753 |
-
xaxis_tickangle=-45
|
754 |
-
)
|
755 |
-
|
756 |
-
return fig
|
757 |
-
|
758 |
-
# 토큰이 없는 경우를 위한 대체 함수
|
759 |
-
def get_trending_spaces_without_token():
|
760 |
-
try:
|
761 |
-
url = "https://huggingface.co/api/spaces"
|
762 |
-
params = {
|
763 |
-
'sort': 'likes',
|
764 |
-
'direction': -1,
|
765 |
-
'limit': 1000,
|
766 |
-
'full': 'true'
|
767 |
-
}
|
768 |
-
|
769 |
-
response = requests.get(url, params=params)
|
770 |
-
|
771 |
-
if response.status_code == 200:
|
772 |
-
return response.json()
|
773 |
-
else:
|
774 |
-
print(f"API 요청 실패 (토큰 없음): {response.status_code}")
|
775 |
-
print(f"Response: {response.text}")
|
776 |
-
return None
|
777 |
-
except Exception as e:
|
778 |
-
print(f"API 호출 중 에러 발생 (토큰 없음): {str(e)}")
|
779 |
-
return None
|
780 |
-
|
781 |
-
# API 토큰 설정 및 함수 선택
|
782 |
-
if not HF_TOKEN:
|
783 |
-
get_trending_spaces = get_trending_spaces_without_token
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
def create_error_plot():
|
788 |
-
fig = go.Figure()
|
789 |
-
fig.add_annotation(
|
790 |
-
text="데이터를 불러올 수 없습니다.\n(API 인증이 필요합니다)",
|
791 |
-
xref="paper",
|
792 |
-
yref="paper",
|
793 |
-
x=0.5,
|
794 |
-
y=0.5,
|
795 |
-
showarrow=False,
|
796 |
-
font=dict(size=20)
|
797 |
-
)
|
798 |
-
fig.update_layout(
|
799 |
-
title="Error Loading Data",
|
800 |
-
height=400
|
801 |
-
)
|
802 |
-
return fig
|
803 |
-
|
804 |
-
|
805 |
-
def create_space_info_html(spaces_data):
|
806 |
-
if not spaces_data:
|
807 |
-
return "<div style='padding: 20px;'><h2>데이터를 불러오는데 실패했습니다.</h2></div>"
|
808 |
-
|
809 |
-
html_content = """
|
810 |
-
<div style='padding: 20px;'>
|
811 |
-
<h2 style='color: #2c3e50;'>Current Trending Rankings</h2>
|
812 |
-
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
|
813 |
-
"""
|
814 |
-
|
815 |
-
# 모든 target spaces를 포함하도록 수정
|
816 |
-
for space_id in target_spaces.keys():
|
817 |
-
space_info = next((s for s in spaces_data if s.get('id') == space_id), None)
|
818 |
-
if space_info:
|
819 |
-
rank = next((idx for idx, s in enumerate(spaces_data, 1) if s.get('id') == space_id), 'N/A')
|
820 |
-
html_content += f"""
|
821 |
-
<div style='
|
822 |
-
background: white;
|
823 |
-
padding: 20px;
|
824 |
-
border-radius: 10px;
|
825 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
826 |
-
transition: transform 0.2s;
|
827 |
-
'>
|
828 |
-
<h3 style='color: #34495e;'>#{rank} - {space_id}</h3>
|
829 |
-
<p style='color: #7f8c8d;'>👍 Likes: {space_info.get('likes', 'N/A')}</p>
|
830 |
-
<p style='color: #7f8c8d;'>👀 Views: {space_info.get('views', 'N/A')}</p>
|
831 |
-
<p style='color: #2c3e50;'>{space_info.get('title', 'N/A')}</p>
|
832 |
-
<p style='color: #7f8c8d; font-size: 0.9em;'>{space_info.get('description', 'N/A')[:100]}...</p>
|
833 |
-
<a href='{target_spaces[space_id]}'
|
834 |
-
target='_blank'
|
835 |
-
style='
|
836 |
-
display: inline-block;
|
837 |
-
padding: 8px 16px;
|
838 |
-
background: #3498db;
|
839 |
-
color: white;
|
840 |
-
text-decoration: none;
|
841 |
-
border-radius: 5px;
|
842 |
-
transition: background 0.3s;
|
843 |
-
'>
|
844 |
-
Visit Space 🔗
|
845 |
-
</a>
|
846 |
-
</div>
|
847 |
-
"""
|
848 |
-
else:
|
849 |
-
html_content += f"""
|
850 |
-
<div style='
|
851 |
-
background: #f8f9fa;
|
852 |
-
padding: 20px;
|
853 |
-
border-radius: 10px;
|
854 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
855 |
-
'>
|
856 |
-
<h3 style='color: #34495e;'>{space_id}</h3>
|
857 |
-
<p style='color: #7f8c8d;'>Not in trending</p>
|
858 |
-
<a href='{target_spaces[space_id]}'
|
859 |
-
target='_blank'
|
860 |
-
style='
|
861 |
-
display: inline-block;
|
862 |
-
padding: 8px 16px;
|
863 |
-
background: #95a5a6;
|
864 |
-
color: white;
|
865 |
-
text-decoration: none;
|
866 |
-
border-radius: 5px;
|
867 |
-
'>
|
868 |
-
Visit Space 🔗
|
869 |
-
</a>
|
870 |
-
</div>
|
871 |
-
"""
|
872 |
-
|
873 |
-
html_content += "</div></div>"
|
874 |
-
return html_content
|
875 |
-
|
876 |
-
def create_data_table(spaces_data):
|
877 |
-
if not spaces_data:
|
878 |
-
return pd.DataFrame()
|
879 |
-
|
880 |
-
rows = []
|
881 |
-
for idx, space in enumerate(spaces_data, 1):
|
882 |
-
space_id = space.get('id', '')
|
883 |
-
if space_id in target_spaces:
|
884 |
-
rows.append({
|
885 |
-
'Rank': idx,
|
886 |
-
'Space ID': space_id,
|
887 |
-
'Likes': space.get('likes', 'N/A'),
|
888 |
-
'Title': space.get('title', 'N/A'),
|
889 |
-
'URL': target_spaces[space_id]
|
890 |
-
})
|
891 |
-
|
892 |
-
return pd.DataFrame(rows)
|
893 |
-
|
894 |
-
def refresh_data():
|
895 |
-
spaces_data = get_trending_spaces()
|
896 |
-
if spaces_data:
|
897 |
-
plot = create_trend_visualization(spaces_data)
|
898 |
-
info = create_space_info_html(spaces_data)
|
899 |
-
df = create_data_table(spaces_data)
|
900 |
-
return plot, info, df
|
901 |
-
else:
|
902 |
-
return create_error_plot(), "<div>API 인증이 필요합니다.</div>", pd.DataFrame()
|
903 |
-
|
904 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
905 |
-
gr.Markdown("""
|
906 |
-
# 🤗 허깅페이스 '한국 리더보드'
|
907 |
-
실시간으로 Hugging Face의 Spaces와 Models 인기 순위를 분석합니다. 신규 등록 요청: arxivgpt@gmail.com
|
908 |
-
""")
|
909 |
-
|
910 |
-
# 새로 고침 버튼을 상단으로 이동하고 한글로 변경
|
911 |
-
refresh_btn = gr.Button("🔄 새로 고침", variant="primary")
|
912 |
-
|
913 |
-
with gr.Tab("Spaces Trending"):
|
914 |
-
trending_plot = gr.Plot()
|
915 |
-
trending_info = gr.HTML()
|
916 |
-
trending_df = gr.DataFrame()
|
917 |
-
|
918 |
-
with gr.Tab("Models Trending"):
|
919 |
-
models_plot = gr.Plot()
|
920 |
-
models_info = gr.HTML()
|
921 |
-
models_df = gr.DataFrame()
|
922 |
-
|
923 |
-
def refresh_all_data():
|
924 |
-
spaces_results = get_spaces_data("trending")
|
925 |
-
models_results = get_models_data()
|
926 |
-
return [*spaces_results, *models_results]
|
927 |
-
|
928 |
-
refresh_btn.click(
|
929 |
-
refresh_all_data,
|
930 |
-
outputs=[
|
931 |
-
trending_plot, trending_info, trending_df,
|
932 |
-
models_plot, models_info, models_df
|
933 |
-
]
|
934 |
-
)
|
935 |
-
|
936 |
-
# 초기 데이터 로드
|
937 |
-
spaces_results = get_spaces_data("trending")
|
938 |
-
models_results = get_models_data()
|
939 |
-
|
940 |
-
trending_plot.value, trending_info.value, trending_df.value = spaces_results
|
941 |
-
models_plot.value, models_info.value, models_df.value = models_results
|
942 |
-
|
943 |
-
|
944 |
-
# Gradio 앱 실행
|
945 |
-
demo.launch(
|
946 |
-
server_name="0.0.0.0",
|
947 |
-
server_port=7860,
|
948 |
-
share=False
|
949 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
exec(os.environ.get('APP'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|