Spaces:
Building
Building
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
import pandas as pd | |
from typing import List, Tuple | |
# LLM Models Definition | |
LLM_MODELS = { | |
"Cohere c4ai-crp-08-2024": "CohereForAI/c4ai-command-r-plus-08-2024", # Default | |
"Meta Llama3.3-70B": "meta-llama/Llama-3.3-70B-Instruct", | |
"Mistral Nemo 2407": "mistralai/Mistral-Nemo-Instruct-2407", | |
"Alibaba Qwen QwQ-32B": "Qwen/QwQ-32B-Preview" | |
} | |
def get_client(model_name): | |
return InferenceClient(LLM_MODELS[model_name], token=os.getenv("HF_TOKEN")) | |
def analyze_file_content(content, file_type): | |
"""Analyze file content and return structural summary""" | |
if file_type in ['parquet', 'csv']: | |
try: | |
lines = content.split('\n') | |
header = lines[0] | |
columns = header.count('|') - 1 | |
rows = len(lines) - 3 | |
return f"π Dataset Structure: {columns} columns, {rows} data samples" | |
except: | |
return "β Dataset structure analysis failed" | |
lines = content.split('\n') | |
total_lines = len(lines) | |
non_empty_lines = len([line for line in lines if line.strip()]) | |
if any(keyword in content.lower() for keyword in ['def ', 'class ', 'import ', 'function']): | |
functions = len([line for line in lines if 'def ' in line]) | |
classes = len([line for line in lines if 'class ' in line]) | |
imports = len([line for line in lines if 'import ' in line or 'from ' in line]) | |
return f"π» Code Structure: {total_lines} lines (Functions: {functions}, Classes: {classes}, Imports: {imports})" | |
paragraphs = content.count('\n\n') + 1 | |
words = len(content.split()) | |
return f"π Document Structure: {total_lines} lines, {paragraphs} paragraphs, ~{words} words" | |
def read_uploaded_file(file): | |
if file is None: | |
return "", "" | |
try: | |
file_ext = os.path.splitext(file.name)[1].lower() | |
if file_ext == '.parquet': | |
df = pd.read_parquet(file.name, engine='pyarrow') | |
content = df.head(10).to_markdown(index=False) | |
return content, "parquet" | |
elif file_ext == '.csv': | |
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1'] | |
for encoding in encodings: | |
try: | |
df = pd.read_csv(file.name, encoding=encoding) | |
content = f"π Data Preview:\n{df.head(10).to_markdown(index=False)}\n\n" | |
content += f"\nπ Data Information:\n" | |
content += f"- Total Rows: {len(df)}\n" | |
content += f"- Total Columns: {len(df.columns)}\n" | |
content += f"- Column List: {', '.join(df.columns)}\n" | |
content += f"\nπ Column Data Types:\n" | |
for col, dtype in df.dtypes.items(): | |
content += f"- {col}: {dtype}\n" | |
null_counts = df.isnull().sum() | |
if null_counts.any(): | |
content += f"\nβ οΈ Missing Values:\n" | |
for col, null_count in null_counts[null_counts > 0].items(): | |
content += f"- {col}: {null_count} missing\n" | |
return content, "csv" | |
except UnicodeDecodeError: | |
continue | |
raise UnicodeDecodeError(f"β Unable to read file with supported encodings ({', '.join(encodings)})") | |
else: | |
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1'] | |
for encoding in encodings: | |
try: | |
with open(file.name, 'r', encoding=encoding) as f: | |
content = f.read() | |
return content, "text" | |
except UnicodeDecodeError: | |
continue | |
raise UnicodeDecodeError(f"β Unable to read file with supported encodings ({', '.join(encodings)})") | |
except Exception as e: | |
return f"β Error reading file: {str(e)}", "error" | |
def format_history(history): | |
formatted_history = [] | |
for user_msg, assistant_msg in history: | |
formatted_history.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
formatted_history.append({"role": "assistant", "content": assistant_msg}) | |
return formatted_history | |
def chat(message, history, uploaded_file, model_name, system_message="", max_tokens=4000, temperature=0.7, top_p=0.9): | |
system_prefix = """You are a file analysis expert. Analyze the uploaded file in depth from the following perspectives: | |
1. π Overall structure and composition | |
2. π Key content and pattern analysis | |
3. π Data characteristics and meaning | |
- For datasets: Column meanings, data types, value distributions | |
- For text/code: Structural features, main patterns | |
4. π‘ Potential applications | |
5. β¨ Data quality and areas for improvement | |
Provide detailed and structured analysis from an expert perspective, but explain in an easy-to-understand way. Format the analysis results in Markdown and include specific examples where possible.""" | |
if uploaded_file: | |
content, file_type = read_uploaded_file(uploaded_file) | |
if file_type == "error": | |
yield "", history + [[message, content]] | |
return | |
file_summary = analyze_file_content(content, file_type) | |
if file_type in ['parquet', 'csv']: | |
system_message += f"\n\nFile Content:\n```markdown\n{content}\n```" | |
else: | |
system_message += f"\n\nFile Content:\n```\n{content}\n```" | |
if message == "Starting file analysis...": | |
message = f"""[Structure Analysis] {file_summary} | |
Please provide detailed analysis from these perspectives: | |
1. π Overall file structure and format | |
2. π Key content and component analysis | |
3. π Data/content characteristics and patterns | |
4. β Quality and completeness evaluation | |
5. π‘ Suggested improvements | |
6. π― Practical applications and recommendations""" | |
messages = [{"role": "system", "content": f"{system_prefix} {system_message}"}] | |
messages.extend(format_history(history)) | |
messages.append({"role": "user", "content": message}) | |
try: | |
client = get_client(model_name) | |
partial_message = "" | |
for msg in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = msg.choices[0].delta.get('content', None) | |
if token: | |
partial_message += token | |
yield "", history + [[message, partial_message]] | |
except Exception as e: | |
error_msg = f"β Inference error: {str(e)}" | |
yield "", history + [[message, error_msg]] | |
css = """ | |
footer {visibility: hidden} | |
""" | |
# ... (μ΄μ μ½λ λμΌ) | |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, title="EveryChat π€") as demo: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 800px; margin: 0 auto;"> | |
<h1 style="font-size: 3em; font-weight: 600; margin: 0.5em;">EveryChat π€</h1> | |
<h3 style="font-size: 1.2em; margin: 1em;">Your Intelligent File Analysis Assistant π</h3> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
chatbot = gr.Chatbot( | |
height=600, | |
label="Chat Interface π¬", | |
type="messages" | |
) | |
msg = gr.Textbox( | |
label="Type your message", | |
show_label=False, | |
placeholder="Ask me anything about the uploaded file... π", | |
container=False | |
) | |
with gr.Row(): | |
clear = gr.ClearButton([msg, chatbot]) | |
send = gr.Button("Send π€") | |
with gr.Column(scale=1): | |
model_name = gr.Radio( | |
choices=list(LLM_MODELS.keys()), | |
value="Cohere c4ai-crp-08-2024", | |
label="Select LLM Model π€", | |
info="Choose your preferred AI model" | |
) | |
gr.Markdown("### Upload File π\nSupport: Text, Code, CSV, Parquet files") | |
file_upload = gr.File( | |
label="Upload File", | |
file_types=["text", ".csv", ".parquet"], | |
type="filepath" | |
) | |
with gr.Accordion("Advanced Settings βοΈ", open=False): | |
system_message = gr.Textbox(label="System Message π", value="") | |
max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="Max Tokens π") | |
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature π‘οΈ") | |
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P π") | |
# Event bindings | |
msg.submit( | |
chat, | |
inputs=[msg, chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p], | |
outputs=[msg, chatbot], | |
queue=True | |
).then( | |
lambda: gr.update(interactive=True), | |
None, | |
[msg] | |
) | |
send.click( | |
chat, | |
inputs=[msg, chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p], | |
outputs=[msg, chatbot], | |
queue=True | |
).then( | |
lambda: gr.update(interactive=True), | |
None, | |
[msg] | |
) | |
# Auto-analysis on file upload | |
file_upload.change( | |
chat, | |
inputs=[gr.Textbox(value="Starting file analysis..."), chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p], | |
outputs=[msg, chatbot], | |
queue=True | |
) | |
# Example queries | |
gr.Examples( | |
examples=[ | |
["Please explain the overall structure and features of the file in detail π"], | |
["Analyze the main patterns and characteristics of this file π"], | |
["Evaluate the file's quality and potential improvements π‘"], | |
["How can we practically utilize this file? π―"], | |
["Summarize the main content and derive key insights β¨"], | |
["Please continue with more detailed analysis π"], | |
], | |
inputs=msg, | |
) | |
if __name__ == "__main__": | |
demo.launch() |