Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,189 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
message,
|
12 |
-
history
|
13 |
system_message,
|
14 |
max_tokens,
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
18 |
messages = [{"role": "system", "content": system_message}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import concurrent.futures
|
4 |
|
5 |
+
# Available LLM models
|
6 |
+
LLM_MODELS = {
|
7 |
+
"Llama-3.3": "meta-llama/Llama-3.3-70B-Instruct",
|
8 |
+
"QwQ-32B": "Qwen/QwQ-32B-Preview",
|
9 |
+
"C4AI-Command": "CohereForAI/c4ai-command-r-plus-08-2024",
|
10 |
+
"Marco-o1": "AIDC-AI/Marco-o1",
|
11 |
+
"Qwen2.5": "Qwen/Qwen2.5-72B-Instruct",
|
12 |
+
"Mistral-Nemo": "mistralai/Mistral-Nemo-Instruct-2407",
|
13 |
+
"Nemotron-70B": "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
|
14 |
+
}
|
15 |
|
16 |
+
# Default selected models
|
17 |
+
DEFAULT_MODELS = [
|
18 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
19 |
+
"CohereForAI/c4ai-command-r-plus-08-2024",
|
20 |
+
"mistralai/Mistral-Nemo-Instruct-2407"
|
21 |
+
]
|
22 |
|
23 |
+
clients = {model: InferenceClient(model) for model in LLM_MODELS.values()}
|
24 |
+
|
25 |
+
def process_file(file):
|
26 |
+
if file is None:
|
27 |
+
return ""
|
28 |
+
if file.name.endswith(('.txt', '.md')):
|
29 |
+
return file.read().decode('utf-8')
|
30 |
+
return f"Uploaded file: {file.name}"
|
31 |
+
|
32 |
+
def respond_single(
|
33 |
+
client,
|
34 |
message,
|
35 |
+
history,
|
36 |
system_message,
|
37 |
max_tokens,
|
38 |
temperature,
|
39 |
top_p,
|
40 |
):
|
41 |
messages = [{"role": "system", "content": system_message}]
|
42 |
+
|
43 |
+
for user, assistant in history:
|
44 |
+
if user:
|
45 |
+
messages.append({"role": "user", "content": user})
|
46 |
+
if assistant:
|
47 |
+
messages.append({"role": "assistant", "content": assistant})
|
48 |
+
|
49 |
+
messages.append({"role": "user", "content": message})
|
50 |
+
|
51 |
+
response = ""
|
52 |
+
try:
|
53 |
+
for msg in client.chat_completion(
|
54 |
+
messages,
|
55 |
+
max_tokens=max_tokens,
|
56 |
+
stream=True,
|
57 |
+
temperature=temperature,
|
58 |
+
top_p=top_p,
|
59 |
+
):
|
60 |
+
token = msg.choices[0].delta.content
|
61 |
+
response += token
|
62 |
+
yield response
|
63 |
+
except Exception as e:
|
64 |
+
yield f"Error: {str(e)}"
|
65 |
|
66 |
+
def respond_all(
|
67 |
+
message,
|
68 |
+
file,
|
69 |
+
history1,
|
70 |
+
history2,
|
71 |
+
history3,
|
72 |
+
selected_models,
|
73 |
+
system_message,
|
74 |
+
max_tokens,
|
75 |
+
temperature,
|
76 |
+
top_p,
|
77 |
+
):
|
78 |
+
if file:
|
79 |
+
file_content = process_file(file)
|
80 |
+
message = f"{message}\n\nFile content:\n{file_content}"
|
81 |
|
82 |
+
while len(selected_models) < 3:
|
83 |
+
selected_models.append(selected_models[-1])
|
84 |
|
85 |
+
def generate(client, history):
|
86 |
+
return respond_single(
|
87 |
+
client,
|
88 |
+
message,
|
89 |
+
history,
|
90 |
+
system_message,
|
91 |
+
max_tokens,
|
92 |
+
temperature,
|
93 |
+
top_p,
|
94 |
+
)
|
95 |
|
96 |
+
return (
|
97 |
+
generate(clients[selected_models[0]], history1),
|
98 |
+
generate(clients[selected_models[1]], history2),
|
99 |
+
generate(clients[selected_models[2]], history3),
|
100 |
+
)
|
|
|
|
|
|
|
101 |
|
102 |
+
with gr.Blocks() as demo:
|
103 |
+
with gr.Row():
|
104 |
+
model_choices = gr.Checkboxgroup(
|
105 |
+
choices=list(LLM_MODELS.values()),
|
106 |
+
value=DEFAULT_MODELS,
|
107 |
+
label="Select Models (Choose up to 3)",
|
108 |
+
interactive=True
|
109 |
+
)
|
110 |
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column():
|
113 |
+
chat1 = gr.ChatInterface(
|
114 |
+
lambda message, history: None,
|
115 |
+
chatbot=gr.Chatbot(height=400, label="Chat 1"),
|
116 |
+
textbox=False,
|
117 |
+
)
|
118 |
+
with gr.Column():
|
119 |
+
chat2 = gr.ChatInterface(
|
120 |
+
lambda message, history: None,
|
121 |
+
chatbot=gr.Chatbot(height=400, label="Chat 2"),
|
122 |
+
textbox=False,
|
123 |
+
)
|
124 |
+
with gr.Column():
|
125 |
+
chat3 = gr.ChatInterface(
|
126 |
+
lambda message, history: None,
|
127 |
+
chatbot=gr.Chatbot(height=400, label="Chat 3"),
|
128 |
+
textbox=False,
|
129 |
+
)
|
130 |
|
131 |
+
with gr.Row():
|
132 |
+
with gr.Column():
|
133 |
+
system_message = gr.Textbox(
|
134 |
+
value="You are a friendly Chatbot.",
|
135 |
+
label="System message"
|
136 |
+
)
|
137 |
+
max_tokens = gr.Slider(
|
138 |
+
minimum=1,
|
139 |
+
maximum=2048,
|
140 |
+
value=512,
|
141 |
+
step=1,
|
142 |
+
label="Max new tokens"
|
143 |
+
)
|
144 |
+
temperature = gr.Slider(
|
145 |
+
minimum=0.1,
|
146 |
+
maximum=4.0,
|
147 |
+
value=0.7,
|
148 |
+
step=0.1,
|
149 |
+
label="Temperature"
|
150 |
+
)
|
151 |
+
top_p = gr.Slider(
|
152 |
+
minimum=0.1,
|
153 |
+
maximum=1.0,
|
154 |
+
value=0.95,
|
155 |
+
step=0.05,
|
156 |
+
label="Top-p"
|
157 |
+
)
|
158 |
+
|
159 |
+
with gr.Row():
|
160 |
+
file_input = gr.File(label="Upload File (optional)")
|
161 |
+
msg_input = gr.Textbox(
|
162 |
+
show_label=False,
|
163 |
+
placeholder="Enter text and press enter",
|
164 |
+
container=False
|
165 |
+
)
|
166 |
+
|
167 |
+
def submit_message(message, file):
|
168 |
+
return respond_all(
|
169 |
+
message,
|
170 |
+
file,
|
171 |
+
chat1.chatbot.value,
|
172 |
+
chat2.chatbot.value,
|
173 |
+
chat3.chatbot.value,
|
174 |
+
model_choices.value,
|
175 |
+
system_message.value,
|
176 |
+
max_tokens.value,
|
177 |
+
temperature.value,
|
178 |
+
top_p.value,
|
179 |
+
)
|
180 |
|
181 |
+
msg_input.submit(
|
182 |
+
submit_message,
|
183 |
+
[msg_input, file_input],
|
184 |
+
[chat1.chatbot, chat2.chatbot, chat3.chatbot],
|
185 |
+
api_name="submit"
|
186 |
+
)
|
187 |
|
188 |
if __name__ == "__main__":
|
189 |
+
demo.launch()
|