Update app-backup1.py
Browse files- app-backup1.py +202 -16
app-backup1.py
CHANGED
@@ -19,6 +19,8 @@ from gradio_imageslider import ImageSlider
|
|
19 |
import numpy as np
|
20 |
import warnings
|
21 |
|
|
|
|
|
22 |
|
23 |
huggingface_token = os.getenv("HF_TOKEN")
|
24 |
|
@@ -325,7 +327,7 @@ def remove_custom_lora(selected_indices, current_loras):
|
|
325 |
lora_image_3
|
326 |
)
|
327 |
|
328 |
-
|
329 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
330 |
print("Generating image...")
|
331 |
pipe.to("cuda")
|
@@ -345,7 +347,7 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
|
345 |
):
|
346 |
yield img
|
347 |
|
348 |
-
|
349 |
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
|
350 |
pipe_i2i.to("cuda")
|
351 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
@@ -364,9 +366,11 @@ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps
|
|
364 |
).images[0]
|
365 |
return final_image
|
366 |
|
367 |
-
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices,
|
|
|
|
|
368 |
try:
|
369 |
-
# 한글 감지 및 번역
|
370 |
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
|
371 |
translated = translator(prompt, max_length=512)[0]['translation_text']
|
372 |
print(f"Original prompt: {prompt}")
|
@@ -378,7 +382,7 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
378 |
|
379 |
selected_loras = [loras_state[idx] for idx in selected_indices]
|
380 |
|
381 |
-
# Build the prompt with trigger words
|
382 |
prepends = []
|
383 |
appends = []
|
384 |
for lora in selected_loras:
|
@@ -401,27 +405,40 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
401 |
# Load LoRA weights with respective scales
|
402 |
lora_names = []
|
403 |
lora_weights = []
|
|
|
404 |
with calculateDuration("Loading LoRA weights"):
|
405 |
for idx, lora in enumerate(selected_loras):
|
406 |
try:
|
407 |
lora_name = f"lora_{idx}"
|
408 |
lora_path = lora['repo']
|
409 |
-
|
410 |
-
|
|
|
|
|
|
|
|
|
411 |
if image_input is not None:
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
|
|
416 |
else:
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
|
|
|
|
421 |
lora_names.append(lora_name)
|
422 |
lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2 if idx == 1 else lora_scale_3)
|
|
|
|
|
423 |
except Exception as e:
|
424 |
print(f"Failed to load LoRA {lora_name}: {str(e)}")
|
|
|
|
|
|
|
425 |
|
426 |
print("Loaded LoRAs:", lora_names)
|
427 |
print("Adapter weights:", lora_weights)
|
@@ -437,11 +454,12 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
437 |
|
438 |
print(f"Active adapters after loading: {pipe.get_active_adapters()}")
|
439 |
|
440 |
-
#
|
441 |
with calculateDuration("Randomizing seed"):
|
442 |
if randomize_seed:
|
443 |
seed = random.randint(0, MAX_SEED)
|
444 |
|
|
|
445 |
if image_input is not None:
|
446 |
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
|
447 |
else:
|
@@ -522,6 +540,138 @@ def update_history(new_image, history):
|
|
522 |
history.insert(0, new_image)
|
523 |
return history
|
524 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
525 |
custom_theme = gr.themes.Base(
|
526 |
primary_hue="blue",
|
527 |
secondary_hue="purple",
|
@@ -825,6 +975,25 @@ input:focus, textarea:focus {
|
|
825 |
max-width: 90% !important;
|
826 |
margin: 0 !important; /* auto에서 0으로 변경 */
|
827 |
margin-left: 20px !important; /* 왼쪽 여백 추가 */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
828 |
}
|
829 |
'''
|
830 |
|
@@ -839,6 +1008,9 @@ with gr.Blocks(theme=custom_theme, css=css, delete_cache=(60, 3600)) as app:
|
|
839 |
갤러리에서 원하는 모델을 선택(최대 3개까지) < 프롬프트에 한글 또는 영문으로 원하는 내용을 입력 < Generate 버튼 실행
|
840 |
"""
|
841 |
)
|
|
|
|
|
|
|
842 |
|
843 |
with gr.Row(elem_id="lora_gallery", equal_height=True):
|
844 |
gallery = gr.Gallery(
|
@@ -855,6 +1027,7 @@ with gr.Blocks(theme=custom_theme, css=css, delete_cache=(60, 3600)) as app:
|
|
855 |
preview=False
|
856 |
)
|
857 |
|
|
|
858 |
with gr.Tab(label="Generate"):
|
859 |
# Prompt and Generate Button
|
860 |
with gr.Row():
|
@@ -1023,6 +1196,19 @@ with gr.Blocks(theme=custom_theme, css=css, delete_cache=(60, 3600)) as app:
|
|
1023 |
outputs=history_gallery
|
1024 |
)
|
1025 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1026 |
if __name__ == "__main__":
|
1027 |
app.queue(max_size=20)
|
1028 |
app.launch(debug=True)
|
|
|
19 |
import numpy as np
|
20 |
import warnings
|
21 |
|
22 |
+
# 상단에 허깅페이스 USERNAME (해당 계정) 반드시 개별 지정할것
|
23 |
+
USERNAME = "openfree"
|
24 |
|
25 |
huggingface_token = os.getenv("HF_TOKEN")
|
26 |
|
|
|
327 |
lora_image_3
|
328 |
)
|
329 |
|
330 |
+
|
331 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
332 |
print("Generating image...")
|
333 |
pipe.to("cuda")
|
|
|
347 |
):
|
348 |
yield img
|
349 |
|
350 |
+
|
351 |
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
|
352 |
pipe_i2i.to("cuda")
|
353 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
|
|
366 |
).images[0]
|
367 |
return final_image
|
368 |
|
369 |
+
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices,
|
370 |
+
lora_scale_1, lora_scale_2, lora_scale_3, randomize_seed, seed,
|
371 |
+
width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
|
372 |
try:
|
373 |
+
# 한글 감지 및 번역
|
374 |
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
|
375 |
translated = translator(prompt, max_length=512)[0]['translation_text']
|
376 |
print(f"Original prompt: {prompt}")
|
|
|
382 |
|
383 |
selected_loras = [loras_state[idx] for idx in selected_indices]
|
384 |
|
385 |
+
# Build the prompt with trigger words
|
386 |
prepends = []
|
387 |
appends = []
|
388 |
for lora in selected_loras:
|
|
|
405 |
# Load LoRA weights with respective scales
|
406 |
lora_names = []
|
407 |
lora_weights = []
|
408 |
+
|
409 |
with calculateDuration("Loading LoRA weights"):
|
410 |
for idx, lora in enumerate(selected_loras):
|
411 |
try:
|
412 |
lora_name = f"lora_{idx}"
|
413 |
lora_path = lora['repo']
|
414 |
+
|
415 |
+
# Private 모델인 경우 특별 처리
|
416 |
+
if lora.get('private', False):
|
417 |
+
lora_path = load_private_model(lora_path, huggingface_token)
|
418 |
+
print(f"Using private model path: {lora_path}")
|
419 |
+
|
420 |
if image_input is not None:
|
421 |
+
pipe_i2i.load_lora_weights(
|
422 |
+
lora_path,
|
423 |
+
adapter_name=lora_name,
|
424 |
+
token=huggingface_token
|
425 |
+
)
|
426 |
else:
|
427 |
+
pipe.load_lora_weights(
|
428 |
+
lora_path,
|
429 |
+
adapter_name=lora_name,
|
430 |
+
token=huggingface_token
|
431 |
+
)
|
432 |
+
|
433 |
lora_names.append(lora_name)
|
434 |
lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2 if idx == 1 else lora_scale_3)
|
435 |
+
print(f"Successfully loaded LoRA {lora_name} from {lora_path}")
|
436 |
+
|
437 |
except Exception as e:
|
438 |
print(f"Failed to load LoRA {lora_name}: {str(e)}")
|
439 |
+
continue
|
440 |
+
|
441 |
+
|
442 |
|
443 |
print("Loaded LoRAs:", lora_names)
|
444 |
print("Adapter weights:", lora_weights)
|
|
|
454 |
|
455 |
print(f"Active adapters after loading: {pipe.get_active_adapters()}")
|
456 |
|
457 |
+
# Randomize seed if needed
|
458 |
with calculateDuration("Randomizing seed"):
|
459 |
if randomize_seed:
|
460 |
seed = random.randint(0, MAX_SEED)
|
461 |
|
462 |
+
# Generate image
|
463 |
if image_input is not None:
|
464 |
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
|
465 |
else:
|
|
|
540 |
history.insert(0, new_image)
|
541 |
return history
|
542 |
|
543 |
+
|
544 |
+
|
545 |
+
def refresh_models(huggingface_token):
|
546 |
+
try:
|
547 |
+
headers = {
|
548 |
+
"Authorization": f"Bearer {huggingface_token}",
|
549 |
+
"Accept": "application/json"
|
550 |
+
}
|
551 |
+
|
552 |
+
username = USERNAME
|
553 |
+
api_url = f"https://huggingface.co/api/models?author={username}"
|
554 |
+
response = requests.get(api_url, headers=headers)
|
555 |
+
if response.status_code != 200:
|
556 |
+
raise Exception(f"Failed to fetch models from HuggingFace. Status code: {response.status_code}")
|
557 |
+
|
558 |
+
all_models = response.json()
|
559 |
+
print(f"Found {len(all_models)} models for user {username}")
|
560 |
+
|
561 |
+
user_models = [
|
562 |
+
model for model in all_models
|
563 |
+
if model.get('tags') and ('flux' in [tag.lower() for tag in model.get('tags', [])] or
|
564 |
+
'flux-lora' in [tag.lower() for tag in model.get('tags', [])])
|
565 |
+
]
|
566 |
+
|
567 |
+
print(f"Found {len(user_models)} FLUX models")
|
568 |
+
|
569 |
+
new_models = []
|
570 |
+
for model in user_models:
|
571 |
+
try:
|
572 |
+
model_id = model['id']
|
573 |
+
model_card_url = f"https://huggingface.co/api/models/{model_id}"
|
574 |
+
model_info_response = requests.get(model_card_url, headers=headers)
|
575 |
+
model_info = model_info_response.json()
|
576 |
+
|
577 |
+
# 이미지 URL에 토큰을 포함시키는 방식으로 변경
|
578 |
+
is_private = model.get('private', False)
|
579 |
+
base_image_name = "1732195028106__000001000_0.jpg" # 기본 이미지 이름
|
580 |
+
|
581 |
+
try:
|
582 |
+
# 실제 이미지 파일 확인
|
583 |
+
fs = HfFileSystem(token=huggingface_token)
|
584 |
+
samples_path = f"{model_id}/samples"
|
585 |
+
files = fs.ls(samples_path, detail=True)
|
586 |
+
jpg_files = [
|
587 |
+
f['name'] for f in files
|
588 |
+
if isinstance(f, dict) and
|
589 |
+
'name' in f and
|
590 |
+
f['name'].lower().endswith('.jpg') and
|
591 |
+
any(char.isdigit() for char in os.path.basename(f['name']))
|
592 |
+
]
|
593 |
+
|
594 |
+
if jpg_files:
|
595 |
+
base_image_name = os.path.basename(jpg_files[0])
|
596 |
+
except Exception as e:
|
597 |
+
print(f"Error accessing samples folder for {model_id}: {str(e)}")
|
598 |
+
|
599 |
+
# 이미지 URL 구성 (토큰 포함)
|
600 |
+
if is_private:
|
601 |
+
# Private 모델의 경우 로컬 캐시 경로 사용
|
602 |
+
cache_dir = f"models/{model_id.replace('/', '_')}/samples"
|
603 |
+
os.makedirs(cache_dir, exist_ok=True)
|
604 |
+
|
605 |
+
# 이미지 다운로드
|
606 |
+
image_url = f"https://huggingface.co/{model_id}/resolve/main/samples/{base_image_name}"
|
607 |
+
local_image_path = os.path.join(cache_dir, base_image_name)
|
608 |
+
|
609 |
+
if not os.path.exists(local_image_path):
|
610 |
+
response = requests.get(image_url, headers=headers)
|
611 |
+
if response.status_code == 200:
|
612 |
+
with open(local_image_path, 'wb') as f:
|
613 |
+
f.write(response.content)
|
614 |
+
|
615 |
+
image_url = local_image_path
|
616 |
+
else:
|
617 |
+
image_url = f"https://huggingface.co/{model_id}/resolve/main/samples/{base_image_name}"
|
618 |
+
|
619 |
+
model_info = {
|
620 |
+
"image": image_url,
|
621 |
+
"title": f"[Private] {model_id.split('/')[-1]}" if is_private else model_id.split('/')[-1],
|
622 |
+
"repo": model_id,
|
623 |
+
"weights": "pytorch_lora_weights.safetensors",
|
624 |
+
"trigger_word": model_info.get('instance_prompt', ''),
|
625 |
+
"private": is_private
|
626 |
+
}
|
627 |
+
new_models.append(model_info)
|
628 |
+
print(f"Added model: {model_id} with image: {image_url}")
|
629 |
+
|
630 |
+
except Exception as e:
|
631 |
+
print(f"Error processing model {model['id']}: {str(e)}")
|
632 |
+
continue
|
633 |
+
|
634 |
+
updated_loras = new_models + [lora for lora in loras if lora['repo'] not in [m['repo'] for m in new_models]]
|
635 |
+
|
636 |
+
print(f"Total models after refresh: {len(updated_loras)}")
|
637 |
+
return updated_loras
|
638 |
+
except Exception as e:
|
639 |
+
print(f"Error refreshing models: {str(e)}")
|
640 |
+
return loras
|
641 |
+
|
642 |
+
def load_private_model(model_id, huggingface_token):
|
643 |
+
"""Private 모델을 로드하는 함수"""
|
644 |
+
try:
|
645 |
+
headers = {"Authorization": f"Bearer {huggingface_token}"}
|
646 |
+
|
647 |
+
# 모델 다운로드
|
648 |
+
local_dir = snapshot_download(
|
649 |
+
repo_id=model_id,
|
650 |
+
token=huggingface_token,
|
651 |
+
local_dir=f"models/{model_id.replace('/', '_')}",
|
652 |
+
local_dir_use_symlinks=False
|
653 |
+
)
|
654 |
+
|
655 |
+
# safetensors 파일 찾기
|
656 |
+
safetensors_file = None
|
657 |
+
for root, dirs, files in os.walk(local_dir):
|
658 |
+
for file in files:
|
659 |
+
if file.endswith('.safetensors'):
|
660 |
+
safetensors_file = os.path.join(root, file)
|
661 |
+
break
|
662 |
+
if safetensors_file:
|
663 |
+
break
|
664 |
+
|
665 |
+
if not safetensors_file:
|
666 |
+
raise Exception(f"No .safetensors file found in {local_dir}")
|
667 |
+
|
668 |
+
print(f"Found safetensors file: {safetensors_file}")
|
669 |
+
return safetensors_file # 전체 경로를 반환
|
670 |
+
|
671 |
+
except Exception as e:
|
672 |
+
print(f"Error loading private model {model_id}: {str(e)}")
|
673 |
+
raise e
|
674 |
+
|
675 |
custom_theme = gr.themes.Base(
|
676 |
primary_hue="blue",
|
677 |
secondary_hue="purple",
|
|
|
975 |
max-width: 90% !important;
|
976 |
margin: 0 !important; /* auto에서 0으로 변경 */
|
977 |
margin-left: 20px !important; /* 왼쪽 여백 추가 */
|
978 |
+
|
979 |
+
/* 새로고침 버튼 스타일 */
|
980 |
+
#refresh-button {
|
981 |
+
margin: 10px;
|
982 |
+
padding: 8px 16px;
|
983 |
+
background-color: #4a5568;
|
984 |
+
color: white;
|
985 |
+
border-radius: 8px;
|
986 |
+
transition: all 0.3s ease;
|
987 |
+
}
|
988 |
+
|
989 |
+
#refresh-button:hover {
|
990 |
+
background-color: #2d3748;
|
991 |
+
transform: scale(1.05);
|
992 |
+
}
|
993 |
+
|
994 |
+
#refresh-button:active {
|
995 |
+
transform: scale(0.95);
|
996 |
+
}
|
997 |
}
|
998 |
'''
|
999 |
|
|
|
1008 |
갤러리에서 원하는 모델을 선택(최대 3개까지) < 프롬프트에 한글 또는 영문으로 원하는 내용을 입력 < Generate 버튼 실행
|
1009 |
"""
|
1010 |
)
|
1011 |
+
# 새로고침 버튼 추가
|
1012 |
+
with gr.Row():
|
1013 |
+
refresh_button = gr.Button("🔄 모델 새로고침(나만의 맞춤 학습된 Private 모델 불러오기)", variant="secondary")
|
1014 |
|
1015 |
with gr.Row(elem_id="lora_gallery", equal_height=True):
|
1016 |
gallery = gr.Gallery(
|
|
|
1027 |
preview=False
|
1028 |
)
|
1029 |
|
1030 |
+
|
1031 |
with gr.Tab(label="Generate"):
|
1032 |
# Prompt and Generate Button
|
1033 |
with gr.Row():
|
|
|
1196 |
outputs=history_gallery
|
1197 |
)
|
1198 |
|
1199 |
+
# 새로고침 버튼 이벤트 핸들러
|
1200 |
+
def refresh_gallery():
|
1201 |
+
updated_loras = refresh_models(huggingface_token)
|
1202 |
+
return (
|
1203 |
+
gr.update(value=[(item["image"], item["title"]) for item in updated_loras]),
|
1204 |
+
updated_loras
|
1205 |
+
)
|
1206 |
+
|
1207 |
+
refresh_button.click(
|
1208 |
+
refresh_gallery,
|
1209 |
+
outputs=[gallery, loras_state]
|
1210 |
+
)
|
1211 |
+
|
1212 |
if __name__ == "__main__":
|
1213 |
app.queue(max_size=20)
|
1214 |
app.launch(debug=True)
|