openfree commited on
Commit
51eea90
·
verified ·
1 Parent(s): dd1c18b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -18
app.py CHANGED
@@ -552,6 +552,9 @@ def process_input(input_image, upscale_factor, **kwargs):
552
 
553
  return input_image.resize((w, h)), w_original, h_original, was_resized
554
 
 
 
 
555
  @spaces.GPU
556
  def infer_upscale(
557
  seed,
@@ -573,7 +576,7 @@ def infer_upscale(
573
 
574
  # rescale with upscale factor
575
  w, h = input_image.size
576
- control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
577
 
578
  generator = torch.Generator(device=device).manual_seed(seed)
579
 
@@ -588,24 +591,29 @@ def infer_upscale(
588
  # Convert to tensor and add batch dimension
589
  control_image = torch.from_numpy(np.array(control_image)).permute(2, 0, 1).float().unsqueeze(0).to(device) / 255.0
590
 
591
- image = pipe_upscale(
592
- prompt="",
593
- control_image=control_image,
594
- controlnet_conditioning_scale=controlnet_conditioning_scale,
595
- num_inference_steps=num_inference_steps,
596
- guidance_scale=3.5,
597
- generator=generator,
598
- ).images[0]
 
 
 
 
 
 
 
 
 
599
 
600
  if was_resized:
601
  gr.Info(
602
  f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
603
  )
604
-
605
- # resize to target desired size
606
- image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
607
-
608
- # image is already a PIL Image, no need for further conversion
609
 
610
  return image, seed, num_inference_steps, upscale_factor, controlnet_conditioning_scale, gr.update(), gr.update(visible=False)
611
  except Exception as e:
@@ -715,10 +723,10 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
715
  controlnet_conditioning_scale = gr.Slider(
716
  label="Controlnet Conditioning Scale",
717
  minimum=0.1,
718
- maximum=1.5,
719
- step=0.1,
720
- value=0.6,
721
- )
722
  upscale_seed = gr.Slider(
723
  label="Seed for Upscaling",
724
  minimum=0,
 
552
 
553
  return input_image.resize((w, h)), w_original, h_original, was_resized
554
 
555
+ from PIL import Image
556
+ import numpy as np
557
+
558
  @spaces.GPU
559
  def infer_upscale(
560
  seed,
 
576
 
577
  # rescale with upscale factor
578
  w, h = input_image.size
579
+ control_image = input_image.resize((w * upscale_factor, h * upscale_factor), Image.LANCZOS)
580
 
581
  generator = torch.Generator(device=device).manual_seed(seed)
582
 
 
591
  # Convert to tensor and add batch dimension
592
  control_image = torch.from_numpy(np.array(control_image)).permute(2, 0, 1).float().unsqueeze(0).to(device) / 255.0
593
 
594
+ with torch.no_grad():
595
+ image = pipe_upscale(
596
+ prompt="",
597
+ control_image=control_image,
598
+ controlnet_conditioning_scale=controlnet_conditioning_scale,
599
+ num_inference_steps=num_inference_steps,
600
+ guidance_scale=3.5,
601
+ generator=generator,
602
+ ).images[0]
603
+
604
+ # Convert the image back to PIL Image
605
+ if isinstance(image, torch.Tensor):
606
+ image = image.cpu().permute(1, 2, 0).numpy()
607
+
608
+ # Ensure the image data is in the correct range
609
+ image = np.clip(image * 255, 0, 255).astype(np.uint8)
610
+ image = Image.fromarray(image)
611
 
612
  if was_resized:
613
  gr.Info(
614
  f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
615
  )
616
+ image = image.resize((w_original * upscale_factor, h_original * upscale_factor), Image.LANCZOS)
 
 
 
 
617
 
618
  return image, seed, num_inference_steps, upscale_factor, controlnet_conditioning_scale, gr.update(), gr.update(visible=False)
619
  except Exception as e:
 
723
  controlnet_conditioning_scale = gr.Slider(
724
  label="Controlnet Conditioning Scale",
725
  minimum=0.1,
726
+ maximum=1.0,
727
+ step=0.05,
728
+ value=0.5, # 기본값을 0.5로 낮춤
729
+ )
730
  upscale_seed = gr.Slider(
731
  label="Seed for Upscaling",
732
  minimum=0,