Update app.py
Browse files
app.py
CHANGED
@@ -204,36 +204,43 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
204 |
selected_loras = [loras[idx] for idx in selected_indices]
|
205 |
|
206 |
# Build the prompt with trigger words
|
207 |
-
|
|
|
208 |
for lora in selected_loras:
|
209 |
trigger_word = lora.get('trigger_word', '')
|
210 |
if trigger_word:
|
211 |
if lora.get("trigger_position") == "prepend":
|
212 |
-
|
213 |
else:
|
214 |
-
|
215 |
-
|
|
|
216 |
# Unload previous LoRA weights
|
217 |
with calculateDuration("Unloading LoRA"):
|
218 |
pipe.unload_lora_weights()
|
219 |
pipe_i2i.unload_lora_weights()
|
220 |
|
221 |
# Load LoRA weights with respective scales
|
|
|
222 |
with calculateDuration("Loading LoRA weights"):
|
223 |
for idx, lora in enumerate(selected_loras):
|
|
|
|
|
224 |
lora_path = lora['repo']
|
225 |
scale = lora_scale_1 if idx == 0 else lora_scale_2
|
226 |
if image_input is not None:
|
227 |
if "weights" in lora:
|
228 |
-
pipe_i2i.load_lora_weights(lora_path, weight_name=lora["weights"],
|
229 |
else:
|
230 |
-
pipe_i2i.load_lora_weights(lora_path,
|
231 |
else:
|
232 |
if "weights" in lora:
|
233 |
-
pipe.load_lora_weights(lora_path, weight_name=lora["weights"],
|
234 |
else:
|
235 |
-
pipe.load_lora_weights(lora_path,
|
236 |
|
|
|
|
|
237 |
# Set random seed for reproducibility
|
238 |
with calculateDuration("Randomizing seed"):
|
239 |
if randomize_seed:
|
|
|
204 |
selected_loras = [loras[idx] for idx in selected_indices]
|
205 |
|
206 |
# Build the prompt with trigger words
|
207 |
+
prepends = []
|
208 |
+
appends = []
|
209 |
for lora in selected_loras:
|
210 |
trigger_word = lora.get('trigger_word', '')
|
211 |
if trigger_word:
|
212 |
if lora.get("trigger_position") == "prepend":
|
213 |
+
prepends.append(trigger_word)
|
214 |
else:
|
215 |
+
appends.append(trigger_word)
|
216 |
+
prompt_mash = " ".join(prepends + [prompt] + appends)
|
217 |
+
|
218 |
# Unload previous LoRA weights
|
219 |
with calculateDuration("Unloading LoRA"):
|
220 |
pipe.unload_lora_weights()
|
221 |
pipe_i2i.unload_lora_weights()
|
222 |
|
223 |
# Load LoRA weights with respective scales
|
224 |
+
lora_names = []
|
225 |
with calculateDuration("Loading LoRA weights"):
|
226 |
for idx, lora in enumerate(selected_loras):
|
227 |
+
lora_name = f"lora_{idx}"
|
228 |
+
lora_names.append(lora_name)
|
229 |
lora_path = lora['repo']
|
230 |
scale = lora_scale_1 if idx == 0 else lora_scale_2
|
231 |
if image_input is not None:
|
232 |
if "weights" in lora:
|
233 |
+
pipe_i2i.load_lora_weights(lora_path, weight_name=lora["weights"], low_cpu_mem_usage=True, adapter_name=lora_name)
|
234 |
else:
|
235 |
+
pipe_i2i.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
|
236 |
else:
|
237 |
if "weights" in lora:
|
238 |
+
pipe.load_lora_weights(lora_path, weight_name=lora["weights"], low_cpu_mem_usage=True, adapter_name=lora_name)
|
239 |
else:
|
240 |
+
pipe.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
|
241 |
|
242 |
+
pipeline.set_adapters(lora_names, adapter_weights=[lora_scale_1, lora_scale_2])
|
243 |
+
|
244 |
# Set random seed for reproducibility
|
245 |
with calculateDuration("Randomizing seed"):
|
246 |
if randomize_seed:
|