Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -24,7 +24,7 @@ import warnings
|
|
24 |
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
25 |
|
26 |
# 번역 모델 로드
|
27 |
-
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
28 |
|
29 |
#Load prompts for randomization
|
30 |
df = pd.read_csv('prompts.csv', header=None)
|
@@ -40,12 +40,12 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
40 |
|
41 |
# 공통 FLUX 모델 로드
|
42 |
base_model = "black-forest-labs/FLUX.1-dev"
|
43 |
-
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype
|
44 |
-
|
45 |
|
46 |
# LoRA를 위한 설정
|
47 |
-
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
48 |
-
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype)
|
49 |
|
50 |
# Image-to-Image 파이프라인 설정
|
51 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
@@ -56,14 +56,12 @@ pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
|
56 |
tokenizer=pipe.tokenizer,
|
57 |
text_encoder_2=pipe.text_encoder_2,
|
58 |
tokenizer_2=pipe.tokenizer_2,
|
59 |
-
torch_dtype=dtype
|
60 |
-
|
61 |
-
).to(device)
|
62 |
|
63 |
controlnet = FluxControlNetModel.from_pretrained(
|
64 |
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
65 |
-
)
|
66 |
-
|
67 |
|
68 |
# Upscale 파이프라인 설정 (기존 pipe 재사용)
|
69 |
pipe_upscale = FluxControlNetPipeline(
|
@@ -74,9 +72,13 @@ pipe_upscale = FluxControlNetPipeline(
|
|
74 |
scheduler=pipe.scheduler,
|
75 |
safety_checker=pipe.safety_checker,
|
76 |
feature_extractor=pipe.feature_extractor,
|
77 |
-
controlnet=controlnet
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
|
|
|
24 |
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
25 |
|
26 |
# 번역 모델 로드
|
27 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=0 if torch.cuda.is_available() else -1)
|
28 |
|
29 |
#Load prompts for randomization
|
30 |
df = pd.read_csv('prompts.csv', header=None)
|
|
|
40 |
|
41 |
# 공통 FLUX 모델 로드
|
42 |
base_model = "black-forest-labs/FLUX.1-dev"
|
43 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype)
|
44 |
+
pipe.to(device) # 여기서 한 번만 device로 이동
|
45 |
|
46 |
# LoRA를 위한 설정
|
47 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
48 |
+
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype)
|
49 |
|
50 |
# Image-to-Image 파이프라인 설정
|
51 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
|
|
56 |
tokenizer=pipe.tokenizer,
|
57 |
text_encoder_2=pipe.text_encoder_2,
|
58 |
tokenizer_2=pipe.tokenizer_2,
|
59 |
+
torch_dtype=dtype
|
60 |
+
)
|
|
|
61 |
|
62 |
controlnet = FluxControlNetModel.from_pretrained(
|
63 |
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
64 |
+
)
|
|
|
65 |
|
66 |
# Upscale 파이프라인 설정 (기존 pipe 재사용)
|
67 |
pipe_upscale = FluxControlNetPipeline(
|
|
|
72 |
scheduler=pipe.scheduler,
|
73 |
safety_checker=pipe.safety_checker,
|
74 |
feature_extractor=pipe.feature_extractor,
|
75 |
+
controlnet=controlnet
|
76 |
+
)
|
77 |
+
|
78 |
+
# 모든 파이프라인을 device로 이동
|
79 |
+
pipe_i2i.to(device)
|
80 |
+
controlnet.to(device)
|
81 |
+
pipe_upscale.to(device)
|
82 |
|
83 |
|
84 |
|