Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,1222 +1,2 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
import json
|
4 |
-
import logging
|
5 |
-
import torch
|
6 |
-
from PIL import Image
|
7 |
-
import spaces
|
8 |
-
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
|
9 |
-
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
10 |
-
from diffusers.utils import load_image
|
11 |
-
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
12 |
-
import copy
|
13 |
-
import random
|
14 |
-
import time
|
15 |
-
import requests
|
16 |
-
import pandas as pd
|
17 |
-
from transformers import pipeline
|
18 |
-
from gradio_imageslider import ImageSlider
|
19 |
-
import numpy as np
|
20 |
-
import warnings
|
21 |
-
|
22 |
-
# 상단에 허깅페이스 USERNAME (해당 계정) 반드시 개별 지정할것
|
23 |
-
USERNAME = "openfree"
|
24 |
-
|
25 |
-
huggingface_token = os.getenv("HF_TOKEN")
|
26 |
-
|
27 |
-
|
28 |
-
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
#Load prompts for randomization
|
33 |
-
df = pd.read_csv('prompts.csv', header=None)
|
34 |
-
prompt_values = df.values.flatten()
|
35 |
-
|
36 |
-
# Load LoRAs from JSON file
|
37 |
-
with open('loras.json', 'r') as f:
|
38 |
-
loras = json.load(f)
|
39 |
-
|
40 |
-
# Initialize the base model
|
41 |
-
dtype = torch.bfloat16
|
42 |
-
|
43 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
44 |
-
|
45 |
-
# 공통 FLUX 모델 로드
|
46 |
-
base_model = "black-forest-labs/FLUX.1-dev"
|
47 |
-
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
|
48 |
-
|
49 |
-
# LoRA를 위한 설정
|
50 |
-
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
51 |
-
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
52 |
-
|
53 |
-
# Image-to-Image 파이프라인 설정
|
54 |
-
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
55 |
-
base_model,
|
56 |
-
vae=good_vae,
|
57 |
-
transformer=pipe.transformer,
|
58 |
-
text_encoder=pipe.text_encoder,
|
59 |
-
tokenizer=pipe.tokenizer,
|
60 |
-
text_encoder_2=pipe.text_encoder_2,
|
61 |
-
tokenizer_2=pipe.tokenizer_2,
|
62 |
-
torch_dtype=dtype
|
63 |
-
).to(device)
|
64 |
-
|
65 |
-
MAX_SEED = 2**32 - 1
|
66 |
-
MAX_PIXEL_BUDGET = 1024 * 1024
|
67 |
-
|
68 |
-
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
69 |
-
|
70 |
-
class calculateDuration:
|
71 |
-
def __init__(self, activity_name=""):
|
72 |
-
self.activity_name = activity_name
|
73 |
-
|
74 |
-
def __enter__(self):
|
75 |
-
self.start_time = time.time()
|
76 |
-
return self
|
77 |
-
|
78 |
-
def __exit__(self, exc_type, exc_value, traceback):
|
79 |
-
self.end_time = time.time()
|
80 |
-
self.elapsed_time = self.end_time - self.start_time
|
81 |
-
if self.activity_name:
|
82 |
-
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
|
83 |
-
else:
|
84 |
-
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
85 |
-
|
86 |
-
def download_file(url, directory=None):
|
87 |
-
if directory is None:
|
88 |
-
directory = os.getcwd() # Use current working directory if not specified
|
89 |
-
|
90 |
-
# Get the filename from the URL
|
91 |
-
filename = url.split('/')[-1]
|
92 |
-
|
93 |
-
# Full path for the downloaded file
|
94 |
-
filepath = os.path.join(directory, filename)
|
95 |
-
|
96 |
-
# Download the file
|
97 |
-
response = requests.get(url)
|
98 |
-
response.raise_for_status() # Raise an exception for bad status codes
|
99 |
-
|
100 |
-
# Write the content to the file
|
101 |
-
with open(filepath, 'wb') as file:
|
102 |
-
file.write(response.content)
|
103 |
-
|
104 |
-
return filepath
|
105 |
-
|
106 |
-
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
|
107 |
-
selected_index = evt.index
|
108 |
-
selected_indices = selected_indices or []
|
109 |
-
if selected_index in selected_indices:
|
110 |
-
selected_indices.remove(selected_index)
|
111 |
-
else:
|
112 |
-
if len(selected_indices) < 3:
|
113 |
-
selected_indices.append(selected_index)
|
114 |
-
else:
|
115 |
-
gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.")
|
116 |
-
return gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), width, height, gr.update(), gr.update(), gr.update()
|
117 |
-
|
118 |
-
selected_info_1 = "Select LoRA 1"
|
119 |
-
selected_info_2 = "Select LoRA 2"
|
120 |
-
selected_info_3 = "Select LoRA 3"
|
121 |
-
|
122 |
-
lora_scale_1 = 1.15
|
123 |
-
lora_scale_2 = 1.15
|
124 |
-
lora_scale_3 = 1.15
|
125 |
-
lora_image_1 = None
|
126 |
-
lora_image_2 = None
|
127 |
-
lora_image_3 = None
|
128 |
-
|
129 |
-
if len(selected_indices) >= 1:
|
130 |
-
lora1 = loras_state[selected_indices[0]]
|
131 |
-
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
132 |
-
lora_image_1 = lora1['image']
|
133 |
-
if len(selected_indices) >= 2:
|
134 |
-
lora2 = loras_state[selected_indices[1]]
|
135 |
-
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
136 |
-
lora_image_2 = lora2['image']
|
137 |
-
if len(selected_indices) >= 3:
|
138 |
-
lora3 = loras_state[selected_indices[2]]
|
139 |
-
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
|
140 |
-
lora_image_3 = lora3['image']
|
141 |
-
|
142 |
-
if selected_indices:
|
143 |
-
last_selected_lora = loras_state[selected_indices[-1]]
|
144 |
-
new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
|
145 |
-
else:
|
146 |
-
new_placeholder = "Type a prompt after selecting a LoRA"
|
147 |
-
|
148 |
-
return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, width, height, lora_image_1, lora_image_2, lora_image_3
|
149 |
-
|
150 |
-
def remove_lora(selected_indices, loras_state, index_to_remove):
|
151 |
-
if len(selected_indices) > index_to_remove:
|
152 |
-
selected_indices.pop(index_to_remove)
|
153 |
-
|
154 |
-
selected_info_1 = "Select LoRA 1"
|
155 |
-
selected_info_2 = "Select LoRA 2"
|
156 |
-
selected_info_3 = "Select LoRA 3"
|
157 |
-
lora_scale_1 = 1.15
|
158 |
-
lora_scale_2 = 1.15
|
159 |
-
lora_scale_3 = 1.15
|
160 |
-
lora_image_1 = None
|
161 |
-
lora_image_2 = None
|
162 |
-
lora_image_3 = None
|
163 |
-
|
164 |
-
for i, idx in enumerate(selected_indices):
|
165 |
-
lora = loras_state[idx]
|
166 |
-
if i == 0:
|
167 |
-
selected_info_1 = f"### LoRA 1 Selected: [{lora['title']}]({lora['repo']}) ✨"
|
168 |
-
lora_image_1 = lora['image']
|
169 |
-
elif i == 1:
|
170 |
-
selected_info_2 = f"### LoRA 2 Selected: [{lora['title']}]({lora['repo']}) ✨"
|
171 |
-
lora_image_2 = lora['image']
|
172 |
-
elif i == 2:
|
173 |
-
selected_info_3 = f"### LoRA 3 Selected: [{lora['title']}]({lora['repo']}) ✨"
|
174 |
-
lora_image_3 = lora['image']
|
175 |
-
|
176 |
-
return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3
|
177 |
-
|
178 |
-
def remove_lora_1(selected_indices, loras_state):
|
179 |
-
return remove_lora(selected_indices, loras_state, 0)
|
180 |
-
|
181 |
-
def remove_lora_2(selected_indices, loras_state):
|
182 |
-
return remove_lora(selected_indices, loras_state, 1)
|
183 |
-
|
184 |
-
def remove_lora_3(selected_indices, loras_state):
|
185 |
-
return remove_lora(selected_indices, loras_state, 2)
|
186 |
-
|
187 |
-
def randomize_loras(selected_indices, loras_state):
|
188 |
-
try:
|
189 |
-
if len(loras_state) < 3:
|
190 |
-
raise gr.Error("Not enough LoRAs to randomize.")
|
191 |
-
selected_indices = random.sample(range(len(loras_state)), 3)
|
192 |
-
lora1 = loras_state[selected_indices[0]]
|
193 |
-
lora2 = loras_state[selected_indices[1]]
|
194 |
-
lora3 = loras_state[selected_indices[2]]
|
195 |
-
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
196 |
-
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
197 |
-
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
|
198 |
-
lora_scale_1 = 1.15
|
199 |
-
lora_scale_2 = 1.15
|
200 |
-
lora_scale_3 = 1.15
|
201 |
-
lora_image_1 = lora1.get('image', 'path/to/default/image.png')
|
202 |
-
lora_image_2 = lora2.get('image', 'path/to/default/image.png')
|
203 |
-
lora_image_3 = lora3.get('image', 'path/to/default/image.png')
|
204 |
-
random_prompt = random.choice(prompt_values)
|
205 |
-
return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, random_prompt
|
206 |
-
except Exception as e:
|
207 |
-
print(f"Error in randomize_loras: {str(e)}")
|
208 |
-
return "Error", "Error", "Error", [], 1.15, 1.15, 1.15, 'path/to/default/image.png', 'path/to/default/image.png', 'path/to/default/image.png', ""
|
209 |
-
|
210 |
-
def add_custom_lora(custom_lora, selected_indices, current_loras):
|
211 |
-
if custom_lora:
|
212 |
-
try:
|
213 |
-
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
|
214 |
-
print(f"Loaded custom LoRA: {repo}")
|
215 |
-
existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None)
|
216 |
-
if existing_item_index is None:
|
217 |
-
if repo.endswith(".safetensors") and repo.startswith("http"):
|
218 |
-
repo = download_file(repo)
|
219 |
-
new_item = {
|
220 |
-
"image": image if image else "/home/user/app/custom.png",
|
221 |
-
"title": title,
|
222 |
-
"repo": repo,
|
223 |
-
"weights": path,
|
224 |
-
"trigger_word": trigger_word
|
225 |
-
}
|
226 |
-
print(f"New LoRA: {new_item}")
|
227 |
-
existing_item_index = len(current_loras)
|
228 |
-
current_loras.append(new_item)
|
229 |
-
|
230 |
-
# Update gallery
|
231 |
-
gallery_items = [(item["image"], item["title"]) for item in current_loras]
|
232 |
-
# Update selected_indices if there's room
|
233 |
-
if len(selected_indices) < 3:
|
234 |
-
selected_indices.append(existing_item_index)
|
235 |
-
else:
|
236 |
-
gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.")
|
237 |
-
|
238 |
-
# Update selected_info and images
|
239 |
-
selected_info_1 = "Select a LoRA 1"
|
240 |
-
selected_info_2 = "Select a LoRA 2"
|
241 |
-
selected_info_3 = "Select a LoRA 3"
|
242 |
-
lora_scale_1 = 1.15
|
243 |
-
lora_scale_2 = 1.15
|
244 |
-
lora_scale_3 = 1.15
|
245 |
-
lora_image_1 = None
|
246 |
-
lora_image_2 = None
|
247 |
-
lora_image_3 = None
|
248 |
-
if len(selected_indices) >= 1:
|
249 |
-
lora1 = current_loras[selected_indices[0]]
|
250 |
-
selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} ✨"
|
251 |
-
lora_image_1 = lora1['image'] if lora1['image'] else None
|
252 |
-
if len(selected_indices) >= 2:
|
253 |
-
lora2 = current_loras[selected_indices[1]]
|
254 |
-
selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} ✨"
|
255 |
-
lora_image_2 = lora2['image'] if lora2['image'] else None
|
256 |
-
if len(selected_indices) >= 3:
|
257 |
-
lora3 = current_loras[selected_indices[2]]
|
258 |
-
selected_info_3 = f"### LoRA 3 Selected: {lora3['title']} ✨"
|
259 |
-
lora_image_3 = lora3['image'] if lora3['image'] else None
|
260 |
-
print("Finished adding custom LoRA")
|
261 |
-
return (
|
262 |
-
current_loras,
|
263 |
-
gr.update(value=gallery_items),
|
264 |
-
selected_info_1,
|
265 |
-
selected_info_2,
|
266 |
-
selected_info_3,
|
267 |
-
selected_indices,
|
268 |
-
lora_scale_1,
|
269 |
-
lora_scale_2,
|
270 |
-
lora_scale_3,
|
271 |
-
lora_image_1,
|
272 |
-
lora_image_2,
|
273 |
-
lora_image_3
|
274 |
-
)
|
275 |
-
except Exception as e:
|
276 |
-
print(e)
|
277 |
-
gr.Warning(str(e))
|
278 |
-
return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
|
279 |
-
else:
|
280 |
-
return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
|
281 |
-
|
282 |
-
def remove_custom_lora(selected_indices, current_loras):
|
283 |
-
if current_loras:
|
284 |
-
custom_lora_repo = current_loras[-1]['repo']
|
285 |
-
# Remove from loras list
|
286 |
-
current_loras = current_loras[:-1]
|
287 |
-
# Remove from selected_indices if selected
|
288 |
-
custom_lora_index = len(current_loras)
|
289 |
-
if custom_lora_index in selected_indices:
|
290 |
-
selected_indices.remove(custom_lora_index)
|
291 |
-
# Update gallery
|
292 |
-
gallery_items = [(item["image"], item["title"]) for item in current_loras]
|
293 |
-
# Update selected_info and images
|
294 |
-
selected_info_1 = "Select a LoRA 1"
|
295 |
-
selected_info_2 = "Select a LoRA 2"
|
296 |
-
selected_info_3 = "Select a LoRA 3"
|
297 |
-
lora_scale_1 = 1.15
|
298 |
-
lora_scale_2 = 1.15
|
299 |
-
lora_scale_3 = 1.15
|
300 |
-
lora_image_1 = None
|
301 |
-
lora_image_2 = None
|
302 |
-
lora_image_3 = None
|
303 |
-
if len(selected_indices) >= 1:
|
304 |
-
lora1 = current_loras[selected_indices[0]]
|
305 |
-
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
|
306 |
-
lora_image_1 = lora1['image']
|
307 |
-
if len(selected_indices) >= 2:
|
308 |
-
lora2 = current_loras[selected_indices[1]]
|
309 |
-
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
|
310 |
-
lora_image_2 = lora2['image']
|
311 |
-
if len(selected_indices) >= 3:
|
312 |
-
lora3 = current_loras[selected_indices[2]]
|
313 |
-
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) ✨"
|
314 |
-
lora_image_3 = lora3['image']
|
315 |
-
return (
|
316 |
-
current_loras,
|
317 |
-
gr.update(value=gallery_items),
|
318 |
-
selected_info_1,
|
319 |
-
selected_info_2,
|
320 |
-
selected_info_3,
|
321 |
-
selected_indices,
|
322 |
-
lora_scale_1,
|
323 |
-
lora_scale_2,
|
324 |
-
lora_scale_3,
|
325 |
-
lora_image_1,
|
326 |
-
lora_image_2,
|
327 |
-
lora_image_3
|
328 |
-
)
|
329 |
-
|
330 |
-
|
331 |
-
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
332 |
-
print("Generating image...")
|
333 |
-
pipe.to("cuda")
|
334 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
335 |
-
with calculateDuration("Generating image"):
|
336 |
-
# Generate image
|
337 |
-
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
338 |
-
prompt=prompt_mash,
|
339 |
-
num_inference_steps=steps,
|
340 |
-
guidance_scale=cfg_scale,
|
341 |
-
width=width,
|
342 |
-
height=height,
|
343 |
-
generator=generator,
|
344 |
-
joint_attention_kwargs={"scale": 1.0},
|
345 |
-
output_type="pil",
|
346 |
-
good_vae=good_vae,
|
347 |
-
):
|
348 |
-
yield img
|
349 |
-
|
350 |
-
|
351 |
-
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
|
352 |
-
pipe_i2i.to("cuda")
|
353 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
354 |
-
image_input = load_image(image_input_path)
|
355 |
-
final_image = pipe_i2i(
|
356 |
-
prompt=prompt_mash,
|
357 |
-
image=image_input,
|
358 |
-
strength=image_strength,
|
359 |
-
num_inference_steps=steps,
|
360 |
-
guidance_scale=cfg_scale,
|
361 |
-
width=width,
|
362 |
-
height=height,
|
363 |
-
generator=generator,
|
364 |
-
joint_attention_kwargs={"scale": 1.0},
|
365 |
-
output_type="pil",
|
366 |
-
).images[0]
|
367 |
-
return final_image
|
368 |
-
|
369 |
-
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices,
|
370 |
-
lora_scale_1, lora_scale_2, lora_scale_3, randomize_seed, seed,
|
371 |
-
width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
|
372 |
-
try:
|
373 |
-
# 한글 감지 및 번역
|
374 |
-
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
|
375 |
-
translated = translator(prompt, max_length=512)[0]['translation_text']
|
376 |
-
print(f"Original prompt: {prompt}")
|
377 |
-
print(f"Translated prompt: {translated}")
|
378 |
-
prompt = translated
|
379 |
-
|
380 |
-
if not selected_indices:
|
381 |
-
raise gr.Error("You must select at least one LoRA before proceeding.")
|
382 |
-
|
383 |
-
selected_loras = [loras_state[idx] for idx in selected_indices]
|
384 |
-
|
385 |
-
# Build the prompt with trigger words
|
386 |
-
prepends = []
|
387 |
-
appends = []
|
388 |
-
for lora in selected_loras:
|
389 |
-
trigger_word = lora.get('trigger_word', '')
|
390 |
-
if trigger_word:
|
391 |
-
if lora.get("trigger_position") == "prepend":
|
392 |
-
prepends.append(trigger_word)
|
393 |
-
else:
|
394 |
-
appends.append(trigger_word)
|
395 |
-
prompt_mash = " ".join(prepends + [prompt] + appends)
|
396 |
-
print("Prompt Mash: ", prompt_mash)
|
397 |
-
|
398 |
-
# Unload previous LoRA weights
|
399 |
-
with calculateDuration("Unloading LoRA"):
|
400 |
-
pipe.unload_lora_weights()
|
401 |
-
pipe_i2i.unload_lora_weights()
|
402 |
-
|
403 |
-
print(f"Active adapters before loading: {pipe.get_active_adapters()}")
|
404 |
-
|
405 |
-
# Load LoRA weights with respective scales
|
406 |
-
lora_names = []
|
407 |
-
lora_weights = []
|
408 |
-
|
409 |
-
with calculateDuration("Loading LoRA weights"):
|
410 |
-
for idx, lora in enumerate(selected_loras):
|
411 |
-
try:
|
412 |
-
lora_name = f"lora_{idx}"
|
413 |
-
lora_path = lora['repo']
|
414 |
-
|
415 |
-
# Private 모델인 경우 특별 처리
|
416 |
-
if lora.get('private', False):
|
417 |
-
lora_path = load_private_model(lora_path, huggingface_token)
|
418 |
-
print(f"Using private model path: {lora_path}")
|
419 |
-
|
420 |
-
if image_input is not None:
|
421 |
-
pipe_i2i.load_lora_weights(
|
422 |
-
lora_path,
|
423 |
-
adapter_name=lora_name,
|
424 |
-
token=huggingface_token
|
425 |
-
)
|
426 |
-
else:
|
427 |
-
pipe.load_lora_weights(
|
428 |
-
lora_path,
|
429 |
-
adapter_name=lora_name,
|
430 |
-
token=huggingface_token
|
431 |
-
)
|
432 |
-
|
433 |
-
lora_names.append(lora_name)
|
434 |
-
lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2 if idx == 1 else lora_scale_3)
|
435 |
-
print(f"Successfully loaded LoRA {lora_name} from {lora_path}")
|
436 |
-
|
437 |
-
except Exception as e:
|
438 |
-
print(f"Failed to load LoRA {lora_name}: {str(e)}")
|
439 |
-
continue
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
print("Loaded LoRAs:", lora_names)
|
444 |
-
print("Adapter weights:", lora_weights)
|
445 |
-
|
446 |
-
if lora_names:
|
447 |
-
if image_input is not None:
|
448 |
-
pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
|
449 |
-
else:
|
450 |
-
pipe.set_adapters(lora_names, adapter_weights=lora_weights)
|
451 |
-
else:
|
452 |
-
print("No LoRAs were successfully loaded.")
|
453 |
-
return None, seed, gr.update(visible=False)
|
454 |
-
|
455 |
-
print(f"Active adapters after loading: {pipe.get_active_adapters()}")
|
456 |
-
|
457 |
-
# Randomize seed if needed
|
458 |
-
with calculateDuration("Randomizing seed"):
|
459 |
-
if randomize_seed:
|
460 |
-
seed = random.randint(0, MAX_SEED)
|
461 |
-
|
462 |
-
# Generate image
|
463 |
-
if image_input is not None:
|
464 |
-
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
|
465 |
-
else:
|
466 |
-
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
467 |
-
final_image = None
|
468 |
-
step_counter = 0
|
469 |
-
for image in image_generator:
|
470 |
-
step_counter += 1
|
471 |
-
final_image = image
|
472 |
-
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
473 |
-
yield image, seed, gr.update(value=progress_bar, visible=True)
|
474 |
-
|
475 |
-
if final_image is None:
|
476 |
-
raise Exception("Failed to generate image")
|
477 |
-
|
478 |
-
return final_image, seed, gr.update(visible=False)
|
479 |
-
|
480 |
-
except Exception as e:
|
481 |
-
print(f"Error in run_lora: {str(e)}")
|
482 |
-
return None, seed, gr.update(visible=False)
|
483 |
-
|
484 |
-
run_lora.zerogpu = True
|
485 |
-
|
486 |
-
def get_huggingface_safetensors(link):
|
487 |
-
split_link = link.split("/")
|
488 |
-
if len(split_link) == 2:
|
489 |
-
model_card = ModelCard.load(link)
|
490 |
-
base_model = model_card.data.get("base_model")
|
491 |
-
print(f"Base model: {base_model}")
|
492 |
-
if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
|
493 |
-
raise Exception("Not a FLUX LoRA!")
|
494 |
-
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
495 |
-
trigger_word = model_card.data.get("instance_prompt", "")
|
496 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
497 |
-
fs = HfFileSystem()
|
498 |
-
safetensors_name = None
|
499 |
-
try:
|
500 |
-
list_of_files = fs.ls(link, detail=False)
|
501 |
-
for file in list_of_files:
|
502 |
-
if file.endswith(".safetensors"):
|
503 |
-
safetensors_name = file.split("/")[-1]
|
504 |
-
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
|
505 |
-
image_elements = file.split("/")
|
506 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
507 |
-
except Exception as e:
|
508 |
-
print(e)
|
509 |
-
raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA")
|
510 |
-
if not safetensors_name:
|
511 |
-
raise gr.Error("No *.safetensors file found in the repository")
|
512 |
-
return split_link[1], link, safetensors_name, trigger_word, image_url
|
513 |
-
else:
|
514 |
-
raise gr.Error("Invalid Hugging Face repository link")
|
515 |
-
|
516 |
-
def check_custom_model(link):
|
517 |
-
if link.endswith(".safetensors"):
|
518 |
-
# Treat as direct link to the LoRA weights
|
519 |
-
title = os.path.basename(link)
|
520 |
-
repo = link
|
521 |
-
path = None # No specific weight name
|
522 |
-
trigger_word = ""
|
523 |
-
image_url = None
|
524 |
-
return title, repo, path, trigger_word, image_url
|
525 |
-
elif link.startswith("https://"):
|
526 |
-
if "huggingface.co" in link:
|
527 |
-
link_split = link.split("huggingface.co/")
|
528 |
-
return get_huggingface_safetensors(link_split[1])
|
529 |
-
else:
|
530 |
-
raise Exception("Unsupported URL")
|
531 |
-
else:
|
532 |
-
# Assume it's a Hugging Face model path
|
533 |
-
return get_huggingface_safetensors(link)
|
534 |
-
|
535 |
-
def update_history(new_image, history):
|
536 |
-
"""Updates the history gallery with the new image."""
|
537 |
-
if history is None:
|
538 |
-
history = []
|
539 |
-
if new_image is not None:
|
540 |
-
history.insert(0, new_image)
|
541 |
-
return history
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
def refresh_models(huggingface_token):
|
546 |
-
try:
|
547 |
-
headers = {
|
548 |
-
"Authorization": f"Bearer {huggingface_token}",
|
549 |
-
"Accept": "application/json"
|
550 |
-
}
|
551 |
-
|
552 |
-
username = USERNAME
|
553 |
-
api_url = f"https://huggingface.co/api/models?author={username}"
|
554 |
-
response = requests.get(api_url, headers=headers)
|
555 |
-
if response.status_code != 200:
|
556 |
-
raise Exception(f"Failed to fetch models from HuggingFace. Status code: {response.status_code}")
|
557 |
-
|
558 |
-
all_models = response.json()
|
559 |
-
print(f"Found {len(all_models)} models for user {username}")
|
560 |
-
|
561 |
-
user_models = [
|
562 |
-
model for model in all_models
|
563 |
-
if model.get('tags') and ('flux' in [tag.lower() for tag in model.get('tags', [])] or
|
564 |
-
'flux-lora' in [tag.lower() for tag in model.get('tags', [])])
|
565 |
-
]
|
566 |
-
|
567 |
-
print(f"Found {len(user_models)} FLUX models")
|
568 |
-
|
569 |
-
new_models = []
|
570 |
-
for model in user_models:
|
571 |
-
try:
|
572 |
-
model_id = model['id']
|
573 |
-
model_card_url = f"https://huggingface.co/api/models/{model_id}"
|
574 |
-
model_info_response = requests.get(model_card_url, headers=headers)
|
575 |
-
model_info = model_info_response.json()
|
576 |
-
|
577 |
-
# 이미지 URL에 토큰을 포함시키는 방식으로 변경
|
578 |
-
is_private = model.get('private', False)
|
579 |
-
base_image_name = "1732195028106__000001000_0.jpg" # 기본 이미지 이름
|
580 |
-
|
581 |
-
try:
|
582 |
-
# 실제 이미지 파일 확인
|
583 |
-
fs = HfFileSystem(token=huggingface_token)
|
584 |
-
samples_path = f"{model_id}/samples"
|
585 |
-
files = fs.ls(samples_path, detail=True)
|
586 |
-
jpg_files = [
|
587 |
-
f['name'] for f in files
|
588 |
-
if isinstance(f, dict) and
|
589 |
-
'name' in f and
|
590 |
-
f['name'].lower().endswith('.jpg') and
|
591 |
-
any(char.isdigit() for char in os.path.basename(f['name']))
|
592 |
-
]
|
593 |
-
|
594 |
-
if jpg_files:
|
595 |
-
base_image_name = os.path.basename(jpg_files[0])
|
596 |
-
except Exception as e:
|
597 |
-
print(f"Error accessing samples folder for {model_id}: {str(e)}")
|
598 |
-
|
599 |
-
# 이미지 URL 구성 (토큰 포함)
|
600 |
-
if is_private:
|
601 |
-
# Private 모델의 경우 로컬 캐시 경로 사용
|
602 |
-
cache_dir = f"models/{model_id.replace('/', '_')}/samples"
|
603 |
-
os.makedirs(cache_dir, exist_ok=True)
|
604 |
-
|
605 |
-
# 이미지 다운로드
|
606 |
-
image_url = f"https://huggingface.co/{model_id}/resolve/main/samples/{base_image_name}"
|
607 |
-
local_image_path = os.path.join(cache_dir, base_image_name)
|
608 |
-
|
609 |
-
if not os.path.exists(local_image_path):
|
610 |
-
response = requests.get(image_url, headers=headers)
|
611 |
-
if response.status_code == 200:
|
612 |
-
with open(local_image_path, 'wb') as f:
|
613 |
-
f.write(response.content)
|
614 |
-
|
615 |
-
image_url = local_image_path
|
616 |
-
else:
|
617 |
-
image_url = f"https://huggingface.co/{model_id}/resolve/main/samples/{base_image_name}"
|
618 |
-
|
619 |
-
model_info = {
|
620 |
-
"image": image_url,
|
621 |
-
"title": f"[Private] {model_id.split('/')[-1]}" if is_private else model_id.split('/')[-1],
|
622 |
-
"repo": model_id,
|
623 |
-
"weights": "pytorch_lora_weights.safetensors",
|
624 |
-
"trigger_word": model_info.get('instance_prompt', ''),
|
625 |
-
"private": is_private
|
626 |
-
}
|
627 |
-
new_models.append(model_info)
|
628 |
-
print(f"Added model: {model_id} with image: {image_url}")
|
629 |
-
|
630 |
-
except Exception as e:
|
631 |
-
print(f"Error processing model {model['id']}: {str(e)}")
|
632 |
-
continue
|
633 |
-
|
634 |
-
updated_loras = new_models + [lora for lora in loras if lora['repo'] not in [m['repo'] for m in new_models]]
|
635 |
-
|
636 |
-
print(f"Total models after refresh: {len(updated_loras)}")
|
637 |
-
return updated_loras
|
638 |
-
except Exception as e:
|
639 |
-
print(f"Error refreshing models: {str(e)}")
|
640 |
-
return loras
|
641 |
-
|
642 |
-
def load_private_model(model_id, huggingface_token):
|
643 |
-
"""Private 모델을 로드하는 함수"""
|
644 |
-
try:
|
645 |
-
headers = {"Authorization": f"Bearer {huggingface_token}"}
|
646 |
-
|
647 |
-
# 모델 다운로드
|
648 |
-
local_dir = snapshot_download(
|
649 |
-
repo_id=model_id,
|
650 |
-
token=huggingface_token,
|
651 |
-
local_dir=f"models/{model_id.replace('/', '_')}",
|
652 |
-
local_dir_use_symlinks=False
|
653 |
-
)
|
654 |
-
|
655 |
-
# safetensors 파일 찾기
|
656 |
-
safetensors_file = None
|
657 |
-
for root, dirs, files in os.walk(local_dir):
|
658 |
-
for file in files:
|
659 |
-
if file.endswith('.safetensors'):
|
660 |
-
safetensors_file = os.path.join(root, file)
|
661 |
-
break
|
662 |
-
if safetensors_file:
|
663 |
-
break
|
664 |
-
|
665 |
-
if not safetensors_file:
|
666 |
-
raise Exception(f"No .safetensors file found in {local_dir}")
|
667 |
-
|
668 |
-
print(f"Found safetensors file: {safetensors_file}")
|
669 |
-
return safetensors_file # 전체 경로를 반환
|
670 |
-
|
671 |
-
except Exception as e:
|
672 |
-
print(f"Error loading private model {model_id}: {str(e)}")
|
673 |
-
raise e
|
674 |
-
|
675 |
-
custom_theme = gr.themes.Base(
|
676 |
-
primary_hue="indigo",
|
677 |
-
secondary_hue="slate",
|
678 |
-
neutral_hue="slate",
|
679 |
-
).set(
|
680 |
-
# 기본 배경 및 보더
|
681 |
-
background_fill_primary="#1a1a1a",
|
682 |
-
background_fill_secondary="#2d2d2d",
|
683 |
-
border_color_primary="#404040",
|
684 |
-
|
685 |
-
# 버튼 스타일
|
686 |
-
button_primary_background_fill="#4F46E5",
|
687 |
-
button_primary_background_fill_dark="#4338CA",
|
688 |
-
button_primary_background_fill_hover="#6366F1",
|
689 |
-
button_primary_border_color="#4F46E5",
|
690 |
-
button_primary_border_color_dark="#4338CA",
|
691 |
-
button_primary_text_color="white",
|
692 |
-
button_primary_text_color_dark="white",
|
693 |
-
|
694 |
-
button_secondary_background_fill="#374151",
|
695 |
-
button_secondary_background_fill_dark="#1F2937",
|
696 |
-
button_secondary_background_fill_hover="#4B5563",
|
697 |
-
button_secondary_text_color="white",
|
698 |
-
button_secondary_text_color_dark="white",
|
699 |
-
|
700 |
-
# 블록 스타일
|
701 |
-
block_background_fill="#2d2d2d",
|
702 |
-
block_background_fill_dark="#1F2937",
|
703 |
-
block_label_background_fill="#4F46E5",
|
704 |
-
block_label_background_fill_dark="#4338CA",
|
705 |
-
block_label_text_color="white",
|
706 |
-
block_label_text_color_dark="white",
|
707 |
-
block_title_text_color="white",
|
708 |
-
block_title_text_color_dark="white",
|
709 |
-
|
710 |
-
# 입력 필드 스타일
|
711 |
-
input_background_fill="#374151",
|
712 |
-
input_background_fill_dark="#1F2937",
|
713 |
-
input_border_color="#4B5563",
|
714 |
-
input_border_color_dark="#374151",
|
715 |
-
input_placeholder_color="#9CA3AF",
|
716 |
-
input_placeholder_color_dark="#6B7280",
|
717 |
-
|
718 |
-
# 그림자 효과
|
719 |
-
shadow_spread="8px",
|
720 |
-
shadow_inset="0px 2px 4px 0px rgba(0,0,0,0.1)",
|
721 |
-
|
722 |
-
# 컨테이너 스타일
|
723 |
-
panel_background_fill="#2d2d2d",
|
724 |
-
panel_background_fill_dark="#1F2937",
|
725 |
-
|
726 |
-
# 보더 스타일
|
727 |
-
border_color_accent="#4F46E5",
|
728 |
-
border_color_accent_dark="#4338CA"
|
729 |
-
)
|
730 |
-
|
731 |
-
css = '''
|
732 |
-
/* 기본 버튼 및 컴포넌트 스타일 */
|
733 |
-
#gen_btn {
|
734 |
-
height: 100%
|
735 |
-
}
|
736 |
-
#title {
|
737 |
-
text-align: center
|
738 |
-
}
|
739 |
-
#title h1 {
|
740 |
-
font-size: 3em;
|
741 |
-
display: inline-flex;
|
742 |
-
align-items: center
|
743 |
-
}
|
744 |
-
#title img {
|
745 |
-
width: 100px;
|
746 |
-
margin-right: 0.25em
|
747 |
-
}
|
748 |
-
#lora_list {
|
749 |
-
background: var(--block-background-fill);
|
750 |
-
padding: 0 1em .3em;
|
751 |
-
font-size: 90%
|
752 |
-
}
|
753 |
-
/* 커스텀 LoRA 카드 스타일 */
|
754 |
-
.custom_lora_card {
|
755 |
-
margin-bottom: 1em
|
756 |
-
}
|
757 |
-
.card_internal {
|
758 |
-
display: flex;
|
759 |
-
height: 100px;
|
760 |
-
margin-top: .5em
|
761 |
-
}
|
762 |
-
.card_internal img {
|
763 |
-
margin-right: 1em
|
764 |
-
}
|
765 |
-
/* 유틸리티 클래스 */
|
766 |
-
.styler {
|
767 |
-
--form-gap-width: 0px !important
|
768 |
-
}
|
769 |
-
/* 프로그레스 바 스타일 */
|
770 |
-
#progress {
|
771 |
-
height: 30px;
|
772 |
-
width: 90% !important;
|
773 |
-
margin: 0 auto !important;
|
774 |
-
}
|
775 |
-
#progress .generating {
|
776 |
-
display: none
|
777 |
-
}
|
778 |
-
.progress-container {
|
779 |
-
width: 100%;
|
780 |
-
height: 30px;
|
781 |
-
background-color: #f0f0f0;
|
782 |
-
border-radius: 15px;
|
783 |
-
overflow: hidden;
|
784 |
-
margin-bottom: 20px
|
785 |
-
}
|
786 |
-
.progress-bar {
|
787 |
-
height: 100%;
|
788 |
-
background-color: #4f46e5;
|
789 |
-
width: calc(var(--current) / var(--total) * 100%);
|
790 |
-
transition: width 0.5s ease-in-out
|
791 |
-
}
|
792 |
-
/* 컴포넌트 특정 스타일 */
|
793 |
-
#component-8, .button_total {
|
794 |
-
height: 100%;
|
795 |
-
align-self: stretch;
|
796 |
-
}
|
797 |
-
#loaded_loras [data-testid="block-info"] {
|
798 |
-
font-size: 80%
|
799 |
-
}
|
800 |
-
#custom_lora_structure {
|
801 |
-
background: var(--block-background-fill)
|
802 |
-
}
|
803 |
-
#custom_lora_btn {
|
804 |
-
margin-top: auto;
|
805 |
-
margin-bottom: 11px
|
806 |
-
}
|
807 |
-
#random_btn {
|
808 |
-
font-size: 300%
|
809 |
-
}
|
810 |
-
#component-11 {
|
811 |
-
align-self: stretch;
|
812 |
-
}
|
813 |
-
/* 갤러리 메인 스타일 */
|
814 |
-
#lora_gallery {
|
815 |
-
margin: 20px 0;
|
816 |
-
padding: 10px;
|
817 |
-
border: 1px solid #ddd;
|
818 |
-
border-radius: 12px;
|
819 |
-
background: linear-gradient(to bottom right, #ffffff, #f8f9fa);
|
820 |
-
width: 100% !important;
|
821 |
-
height: 800px !important;
|
822 |
-
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
|
823 |
-
display: block !important;
|
824 |
-
}
|
825 |
-
/* 갤러리 그리드 스타일 */
|
826 |
-
#gallery {
|
827 |
-
display: grid !important;
|
828 |
-
grid-template-columns: repeat(10, 1fr) !important;
|
829 |
-
gap: 10px !important;
|
830 |
-
padding: 10px !important;
|
831 |
-
width: 100% !important;
|
832 |
-
height: 100% !important;
|
833 |
-
overflow-y: auto !important;
|
834 |
-
max-width: 100% !important;
|
835 |
-
}
|
836 |
-
/* 갤러리 아이템 스타일 */
|
837 |
-
.gallery-item {
|
838 |
-
position: relative !important;
|
839 |
-
width: 100% !important;
|
840 |
-
aspect-ratio: 1 !important;
|
841 |
-
margin: 0 !important;
|
842 |
-
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
|
843 |
-
transition: transform 0.3s ease, box-shadow 0.3s ease;
|
844 |
-
border-radius: 12px;
|
845 |
-
overflow: hidden;
|
846 |
-
}
|
847 |
-
.gallery-item img {
|
848 |
-
width: 100% !important;
|
849 |
-
height: 100% !important;
|
850 |
-
object-fit: cover !important;
|
851 |
-
border-radius: 12px !important;
|
852 |
-
}
|
853 |
-
/* 갤러리 그리드 래퍼 */
|
854 |
-
.wrap, .svelte-w6dy5e {
|
855 |
-
display: grid !important;
|
856 |
-
grid-template-columns: repeat(10, 1fr) !important;
|
857 |
-
gap: 10px !important;
|
858 |
-
width: 100% !important;
|
859 |
-
max-width: 100% !important;
|
860 |
-
}
|
861 |
-
/* 컨테이너 공통 스타일 */
|
862 |
-
.container, .content, .block, .contain {
|
863 |
-
width: 100% !important;
|
864 |
-
max-width: 100% !important;
|
865 |
-
margin: 0 !important;
|
866 |
-
padding: 0 !important;
|
867 |
-
}
|
868 |
-
.row {
|
869 |
-
width: 100% !important;
|
870 |
-
margin: 0 !important;
|
871 |
-
padding: 0 !important;
|
872 |
-
}
|
873 |
-
/* 버튼 스타일 */
|
874 |
-
.button_total {
|
875 |
-
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
|
876 |
-
transition: all 0.3s ease;
|
877 |
-
}
|
878 |
-
.button_total:hover {
|
879 |
-
transform: translateY(-2px);
|
880 |
-
box-shadow: 0 10px 15px -3px rgba(0, 0, 0, 0.1), 0 4px 6px -2px rgba(0, 0, 0, 0.05);
|
881 |
-
}
|
882 |
-
/* 입력 필드 스타일 */
|
883 |
-
input, textarea {
|
884 |
-
box-shadow: inset 0 2px 4px 0 rgba(0, 0, 0, 0.06);
|
885 |
-
transition: all 0.3s ease;
|
886 |
-
}
|
887 |
-
input:focus, textarea:focus {
|
888 |
-
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5);
|
889 |
-
}
|
890 |
-
/* 컴포넌트 border-radius */
|
891 |
-
.gradio-container .input,
|
892 |
-
.gradio-container .button,
|
893 |
-
.gradio-container .block {
|
894 |
-
border-radius: 12px;
|
895 |
-
}
|
896 |
-
/* 스크롤바 스타일 */
|
897 |
-
#gallery::-webkit-scrollbar {
|
898 |
-
width: 8px;
|
899 |
-
}
|
900 |
-
#gallery::-webkit-scrollbar-track {
|
901 |
-
background: #f1f1f1;
|
902 |
-
border-radius: 4px;
|
903 |
-
}
|
904 |
-
#gallery::-webkit-scrollbar-thumb {
|
905 |
-
background: #888;
|
906 |
-
border-radius: 4px;
|
907 |
-
}
|
908 |
-
#gallery::-webkit-scrollbar-thumb:hover {
|
909 |
-
background: #555;
|
910 |
-
}
|
911 |
-
/* Flex 컨테이너 */
|
912 |
-
.flex {
|
913 |
-
width: 100% !important;
|
914 |
-
max-width: 100% !important;
|
915 |
-
display: flex !important;
|
916 |
-
}
|
917 |
-
/* Svelte 특정 클래스 */
|
918 |
-
.svelte-1p9xokt {
|
919 |
-
width: 100% !important;
|
920 |
-
max-width: 100% !important;
|
921 |
-
}
|
922 |
-
/* Footer 숨김 */
|
923 |
-
#footer {
|
924 |
-
visibility: hidden;
|
925 |
-
}
|
926 |
-
/* 결과 이미지 및 컨테이너 스타일 */
|
927 |
-
#result_column, #result_column > div {
|
928 |
-
display: flex !important;
|
929 |
-
flex-direction: column !important;
|
930 |
-
align-items: flex-start !important; /* center에서 flex-start로 변경 */
|
931 |
-
width: 100% !important;
|
932 |
-
margin: 0 !important; /* auto에서 0으로 변경 */
|
933 |
-
}
|
934 |
-
.generated-image, .generated-image > div {
|
935 |
-
display: flex !important;
|
936 |
-
justify-content: flex-start !important; /* center에서 flex-start로 변경 */
|
937 |
-
align-items: flex-start !important; /* center에서 flex-start로 변경 */
|
938 |
-
width: 90% !important;
|
939 |
-
max-width: 768px !important;
|
940 |
-
margin: 0 !important; /* auto에서 0으로 변경 */
|
941 |
-
margin-left: 20px !important; /* 왼쪽 여백 추가 */
|
942 |
-
}
|
943 |
-
.generated-image img {
|
944 |
-
margin: 0 !important; /* auto에서 0으로 변경 */
|
945 |
-
display: block !important;
|
946 |
-
max-width: 100% !important;
|
947 |
-
}
|
948 |
-
/* 히스토리 갤러리도 좌측 정렬로 변경 */
|
949 |
-
.history-gallery {
|
950 |
-
display: flex !important;
|
951 |
-
justify-content: flex-start !important; /* center에서 flex-start로 변경 */
|
952 |
-
width: 90% !important;
|
953 |
-
max-width: 90% !important;
|
954 |
-
margin: 0 !important; /* auto에서 0으로 변경 */
|
955 |
-
margin-left: 20px !important; /* 왼쪽 여백 추가 */
|
956 |
-
/* 새로고침 버튼 스타일 */
|
957 |
-
#refresh-button {
|
958 |
-
margin: 10px;
|
959 |
-
padding: 8px 16px;
|
960 |
-
background-color: #4a5568;
|
961 |
-
color: white;
|
962 |
-
border-radius: 8px;
|
963 |
-
transition: all 0.3s ease;
|
964 |
-
}
|
965 |
-
#refresh-button:hover {
|
966 |
-
background-color: #2d3748;
|
967 |
-
transform: scale(1.05);
|
968 |
-
}
|
969 |
-
#refresh-button:active {
|
970 |
-
transform: scale(0.95);
|
971 |
-
}
|
972 |
-
/* Markdown 텍스트 스타일 */
|
973 |
-
.markdown {
|
974 |
-
color: white !important;
|
975 |
-
}
|
976 |
-
|
977 |
-
/* 프롬프트 입력 필드 텍스트 스타일 */
|
978 |
-
textarea, input[type="text"] {
|
979 |
-
color: white !important;
|
980 |
-
}
|
981 |
-
|
982 |
-
/* 라벨 텍스트 스타일 */
|
983 |
-
label, .label-text {
|
984 |
-
color: white !important;
|
985 |
-
}
|
986 |
-
|
987 |
-
/* Markdown 헤더 스타일 */
|
988 |
-
.markdown h1,
|
989 |
-
.markdown h2,
|
990 |
-
.markdown h3,
|
991 |
-
.markdown h4,
|
992 |
-
.markdown h5,
|
993 |
-
.markdown h6,
|
994 |
-
.markdown p {
|
995 |
-
color: white !important;
|
996 |
-
}
|
997 |
-
|
998 |
-
/* 입력 필드 placeholder 스타일 */
|
999 |
-
::placeholder {
|
1000 |
-
color: rgba(255, 255, 255, 0.5) !important;
|
1001 |
-
}
|
1002 |
-
|
1003 |
-
/* 텍스트 영역 스타일 */
|
1004 |
-
.gradio-container textarea {
|
1005 |
-
color: white !important;
|
1006 |
-
}
|
1007 |
-
'''
|
1008 |
-
|
1009 |
-
with gr.Blocks(theme=custom_theme, css=css, delete_cache=(60, 3600)) as app:
|
1010 |
-
loras_state = gr.State(loras)
|
1011 |
-
selected_indices = gr.State([])
|
1012 |
-
|
1013 |
-
gr.Markdown(
|
1014 |
-
"""# 🎨 GiniGen
|
1015 |
-
### 사용 안내: 갤러리에서 원하는 모델을 선택(최대 3개까지) < 프롬프트에 한글 또는 영문으로 원하는 내용을 입력 < Generate 버튼 실행""",
|
1016 |
-
elem_classes=["markdown"]
|
1017 |
-
)
|
1018 |
-
|
1019 |
-
# 새로고침 버튼 추가
|
1020 |
-
with gr.Row():
|
1021 |
-
refresh_button = gr.Button("🔄 모델 새로고침(나만의 맞춤 학습된 Private 모델 불러오기)", variant="secondary")
|
1022 |
-
|
1023 |
-
with gr.Row(elem_id="lora_gallery", equal_height=True):
|
1024 |
-
gallery = gr.Gallery(
|
1025 |
-
value=[(item["image"], item["title"]) for item in loras],
|
1026 |
-
label="LoRA Explorer Gallery",
|
1027 |
-
columns=11,
|
1028 |
-
elem_id="gallery",
|
1029 |
-
height=800,
|
1030 |
-
object_fit="cover",
|
1031 |
-
show_label=True,
|
1032 |
-
allow_preview=False,
|
1033 |
-
show_share_button=False,
|
1034 |
-
container=True,
|
1035 |
-
preview=False
|
1036 |
-
)
|
1037 |
-
|
1038 |
-
|
1039 |
-
with gr.Tab(label="Generate"):
|
1040 |
-
# Prompt and Generate Button
|
1041 |
-
with gr.Row():
|
1042 |
-
with gr.Column(scale=3):
|
1043 |
-
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
|
1044 |
-
with gr.Column(scale=1):
|
1045 |
-
generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"])
|
1046 |
-
|
1047 |
-
# LoRA Selection Area
|
1048 |
-
with gr.Row(elem_id="loaded_loras"):
|
1049 |
-
# Randomize Button
|
1050 |
-
with gr.Column(scale=1, min_width=25):
|
1051 |
-
randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn")
|
1052 |
-
|
1053 |
-
# LoRA 1
|
1054 |
-
with gr.Column(scale=8):
|
1055 |
-
with gr.Row():
|
1056 |
-
with gr.Column(scale=0, min_width=50):
|
1057 |
-
lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
|
1058 |
-
with gr.Column(scale=3, min_width=100):
|
1059 |
-
selected_info_1 = gr.Markdown("Select a LoRA 1")
|
1060 |
-
with gr.Column(scale=5, min_width=50):
|
1061 |
-
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
1062 |
-
with gr.Row():
|
1063 |
-
remove_button_1 = gr.Button("Remove", size="sm")
|
1064 |
-
|
1065 |
-
# LoRA 2
|
1066 |
-
with gr.Column(scale=8):
|
1067 |
-
with gr.Row():
|
1068 |
-
with gr.Column(scale=0, min_width=50):
|
1069 |
-
lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
|
1070 |
-
with gr.Column(scale=3, min_width=100):
|
1071 |
-
selected_info_2 = gr.Markdown("Select a LoRA 2")
|
1072 |
-
with gr.Column(scale=5, min_width=50):
|
1073 |
-
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
1074 |
-
with gr.Row():
|
1075 |
-
remove_button_2 = gr.Button("Remove", size="sm")
|
1076 |
-
|
1077 |
-
# LoRA 3
|
1078 |
-
with gr.Column(scale=8):
|
1079 |
-
with gr.Row():
|
1080 |
-
with gr.Column(scale=0, min_width=50):
|
1081 |
-
lora_image_3 = gr.Image(label="LoRA 3 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
|
1082 |
-
with gr.Column(scale=3, min_width=100):
|
1083 |
-
selected_info_3 = gr.Markdown("Select a LoRA 3")
|
1084 |
-
with gr.Column(scale=5, min_width=50):
|
1085 |
-
lora_scale_3 = gr.Slider(label="LoRA 3 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
1086 |
-
with gr.Row():
|
1087 |
-
remove_button_3 = gr.Button("Remove", size="sm")
|
1088 |
-
|
1089 |
-
# Result and Progress Area
|
1090 |
-
with gr.Column(elem_id="result_column"):
|
1091 |
-
progress_bar = gr.Markdown(elem_id="progress", visible=False)
|
1092 |
-
with gr.Column(elem_id="result_box"): # Box를 Column으로 변경
|
1093 |
-
result = gr.Image(
|
1094 |
-
label="Generated Image",
|
1095 |
-
interactive=False,
|
1096 |
-
elem_classes=["generated-image"],
|
1097 |
-
container=True,
|
1098 |
-
elem_id="result_image",
|
1099 |
-
width="100%"
|
1100 |
-
)
|
1101 |
-
with gr.Accordion("History", open=False):
|
1102 |
-
history_gallery = gr.Gallery(
|
1103 |
-
label="History",
|
1104 |
-
columns=6,
|
1105 |
-
object_fit="contain",
|
1106 |
-
interactive=False,
|
1107 |
-
elem_classes=["history-gallery"]
|
1108 |
-
)
|
1109 |
-
|
1110 |
-
|
1111 |
-
# Advanced Settings
|
1112 |
-
with gr.Row():
|
1113 |
-
with gr.Accordion("Advanced Settings", open=False):
|
1114 |
-
with gr.Row():
|
1115 |
-
input_image = gr.Image(label="Input image", type="filepath")
|
1116 |
-
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
|
1117 |
-
with gr.Column():
|
1118 |
-
with gr.Row():
|
1119 |
-
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
1120 |
-
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
1121 |
-
with gr.Row():
|
1122 |
-
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
1123 |
-
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
1124 |
-
with gr.Row():
|
1125 |
-
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
1126 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
1127 |
-
|
1128 |
-
# Custom LoRA Section
|
1129 |
-
with gr.Column():
|
1130 |
-
with gr.Group():
|
1131 |
-
with gr.Row(elem_id="custom_lora_structure"):
|
1132 |
-
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="ginipick/flux-lora-eric-cat", scale=3, min_width=150)
|
1133 |
-
add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150)
|
1134 |
-
remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False)
|
1135 |
-
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
1136 |
-
|
1137 |
-
# Event Handlers
|
1138 |
-
gallery.select(
|
1139 |
-
update_selection,
|
1140 |
-
inputs=[selected_indices, loras_state, width, height],
|
1141 |
-
outputs=[prompt, selected_info_1, selected_info_2, selected_info_3, selected_indices,
|
1142 |
-
lora_scale_1, lora_scale_2, lora_scale_3, width, height,
|
1143 |
-
lora_image_1, lora_image_2, lora_image_3]
|
1144 |
-
)
|
1145 |
-
|
1146 |
-
remove_button_1.click(
|
1147 |
-
remove_lora_1,
|
1148 |
-
inputs=[selected_indices, loras_state],
|
1149 |
-
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices,
|
1150 |
-
lora_scale_1, lora_scale_2, lora_scale_3,
|
1151 |
-
lora_image_1, lora_image_2, lora_image_3]
|
1152 |
-
)
|
1153 |
-
|
1154 |
-
remove_button_2.click(
|
1155 |
-
remove_lora_2,
|
1156 |
-
inputs=[selected_indices, loras_state],
|
1157 |
-
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices,
|
1158 |
-
lora_scale_1, lora_scale_2, lora_scale_3,
|
1159 |
-
lora_image_1, lora_image_2, lora_image_3]
|
1160 |
-
)
|
1161 |
-
|
1162 |
-
remove_button_3.click(
|
1163 |
-
remove_lora_3,
|
1164 |
-
inputs=[selected_indices, loras_state],
|
1165 |
-
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices,
|
1166 |
-
lora_scale_1, lora_scale_2, lora_scale_3,
|
1167 |
-
lora_image_1, lora_image_2, lora_image_3]
|
1168 |
-
)
|
1169 |
-
|
1170 |
-
randomize_button.click(
|
1171 |
-
randomize_loras,
|
1172 |
-
inputs=[selected_indices, loras_state],
|
1173 |
-
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices,
|
1174 |
-
lora_scale_1, lora_scale_2, lora_scale_3,
|
1175 |
-
lora_image_1, lora_image_2, lora_image_3, prompt]
|
1176 |
-
)
|
1177 |
-
|
1178 |
-
add_custom_lora_button.click(
|
1179 |
-
add_custom_lora,
|
1180 |
-
inputs=[custom_lora, selected_indices, loras_state],
|
1181 |
-
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3,
|
1182 |
-
selected_indices, lora_scale_1, lora_scale_2, lora_scale_3,
|
1183 |
-
lora_image_1, lora_image_2, lora_image_3]
|
1184 |
-
)
|
1185 |
-
|
1186 |
-
remove_custom_lora_button.click(
|
1187 |
-
remove_custom_lora,
|
1188 |
-
inputs=[selected_indices, loras_state],
|
1189 |
-
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3,
|
1190 |
-
selected_indices, lora_scale_1, lora_scale_2, lora_scale_3,
|
1191 |
-
lora_image_1, lora_image_2, lora_image_3]
|
1192 |
-
)
|
1193 |
-
|
1194 |
-
gr.on(
|
1195 |
-
triggers=[generate_button.click, prompt.submit],
|
1196 |
-
fn=run_lora,
|
1197 |
-
inputs=[prompt, input_image, image_strength, cfg_scale, steps,
|
1198 |
-
selected_indices, lora_scale_1, lora_scale_2, lora_scale_3,
|
1199 |
-
randomize_seed, seed, width, height, loras_state],
|
1200 |
-
outputs=[result, seed, progress_bar]
|
1201 |
-
).then(
|
1202 |
-
fn=lambda x, history: update_history(x, history) if x is not None else history,
|
1203 |
-
inputs=[result, history_gallery],
|
1204 |
-
outputs=history_gallery
|
1205 |
-
)
|
1206 |
-
|
1207 |
-
# 새로고침 버튼 이벤트 핸들러
|
1208 |
-
def refresh_gallery():
|
1209 |
-
updated_loras = refresh_models(huggingface_token)
|
1210 |
-
return (
|
1211 |
-
gr.update(value=[(item["image"], item["title"]) for item in updated_loras]),
|
1212 |
-
updated_loras
|
1213 |
-
)
|
1214 |
-
|
1215 |
-
refresh_button.click(
|
1216 |
-
refresh_gallery,
|
1217 |
-
outputs=[gallery, loras_state]
|
1218 |
-
)
|
1219 |
-
|
1220 |
-
if __name__ == "__main__":
|
1221 |
-
app.queue(max_size=20)
|
1222 |
-
app.launch(debug=True)
|
|
|
1 |
import os
|
2 |
+
exec(os.environ.get('APP'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|