File size: 8,576 Bytes
2d6061e
 
 
 
 
 
43af989
2d6061e
 
 
 
 
71a5076
 
2d6061e
51bd190
71a5076
 
 
2d6061e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
614d206
2d6061e
aad2eee
2d6061e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb4b5a6
 
2d6061e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4a0425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6061e
442366c
2d6061e
 
 
51bd190
2d6061e
 
 
 
 
520f6d6
614d206
2d6061e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from datasets import load_dataset

API_URL = "https://api-inference.huggingface.co/models/openskyml/open-diffusion-v1"
API_TOKEN = os.getenv("HF_READ_TOKEN") # it is free
headers = {"Authorization": f"Bearer {API_TOKEN}"}

word_list_dataset = load_dataset("openskyml/bad-words-prompt-list", data_files="en.txt", use_auth_token=True)
word_list = word_list_dataset["train"]['text']

def query(prompt, is_negative=False, image_style="None style", steps=8, cfg_scale=7, seed=None, num_images=4):
    for filter in word_list:
        if re.search(rf"\b{filter}\b", prompt):
            raise gr.Error("Unsafe content found. Please try again with different prompts.")
    images = []
    for _ in range(num_images):
        if image_style == "None style":
            payload = {
                "inputs": prompt + ", 8k",
                "is_negative": is_negative,
                "steps": steps,
                "cfg_scale": cfg_scale,
                "seed": seed if seed is not None else random.randint(-1, 2147483647)
            }
        elif image_style == "Cinematic":
            payload = {
                "inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko",
                "is_negative": is_negative + ", abstract, cartoon, stylized",
                "steps": steps,
                "cfg_scale": cfg_scale,
                "seed": seed if seed is not None else random.randint(-1, 2147483647)
            }
        elif image_style == "Digital Art":
            payload = {
                "inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star",
                "is_negative": is_negative + ", sharp , modern , bright",
                "steps": steps,
                "cfg_scale": cfg_scale,
                "seed": seed if seed is not None else random.randint(-1, 2147483647)
            }
        elif image_style == "Portrait":
            payload = {
                "inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)",
                "is_negative": is_negative,
                "steps": steps,
                "cfg_scale": cfg_scale,
                "seed": seed if seed is not None else random.randint(-1, 2147483647)
            }

        image_bytes = requests.post(API_URL, headers=headers, json=payload).content
        image = Image.open(io.BytesIO(image_bytes))
        
        images.append(image)

    return images


css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        #share-btn-container {
            display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
            margin-top: 10px;
            margin-left: auto;
        }
        #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
        }
        #share-btn * {
            all: unset;
        }
        #share-btn-container div:nth-child(-n+2){
            width: auto !important;
            min-height: 0px !important;
        }
        #share-btn-container .wrap {
            display: none !important;
        }
        .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
        #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem}
        #component-16{border-top-width: 1px!important;margin-top: 1em}
        .image_duplication{position: absolute; width: 100px; left: 50px}
"""

with gr.Blocks(css=css) as demo:
    gr.HTML(
        """
            <div style="text-align: center; margin: 0 auto;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                "
              >
                <h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px">
                  Open Diffusion 1.0 Demo
                </h1>
              </div>
            </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
                with gr.Column():
                    gallery_output = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
                    text_prompt = gr.Textbox(show_label=False, placeholder="Enter your prompt", max_lines=1, elem_id="prompt-text-input").style(border=(True, False, True, True), rounded=(True, False, False, True), container=False)
                    negative_prompt = gr.Textbox(show_label=False, placeholder="Enter a negative prompt", max_lines=1, elem_id="negative-prompt-text-input").style(border=(True, False, True, True), rounded=(True, False, False, True), container=False)
                    text_button = gr.Button("Generate").style(margin=False, rounded=(False, True, True, False), full_width=False)

        
        
    text_button.click(query, inputs=[text_prompt, negative_prompt], outputs=gallery_output)

demo.launch(show_api=False)