import gradio as gr import torch from transformers import pipeline MODEL_NAME = "openai/whisper-tiny" BATCH_SIZE = 8 device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) def transcribe(inputs, task = "transcribe"): if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] return text iface = gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources="microphone", type="filepath"), ], outputs="text", title="test", description=( "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper" f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" " of arbitrary length." ), allow_flagging="never", ) iface.launch()