File size: 6,308 Bytes
5877740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f3460
5877740
 
 
 
 
 
 
 
 
e135c70
b3892b9
fc6734a
 
 
 
b3892b9
 
 
 
 
 
 
 
 
89cf0d5
 
b3892b9
89cf0d5
b3892b9
89cf0d5
 
 
 
5877740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c299e41
5877740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c299e41
 
4f47930
 
08c66a8
89cf0d5
 
4f47930
 
c299e41
4f47930
b3892b9
c299e41
 
 
5877740
 
d44444d
 
 
 
5877740
 
 
 
 
 
 
 
 
 
 
 
b96b0f6
5877740
2beac6a
22f3460
 
89cf0d5
 
5877740
 
 
 
 
2beac6a
fc6734a
2beac6a
5877740
89cf0d5
c299e41
89cf0d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30b8b41
4f47930
89cf0d5
 
 
 
 
 
 
 
 
5877740
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/usr/bin/env python
# coding: utf-8


import pandas as pd
import base64
import uuid
import io
import pickle
import string
import simplejson as json
import regex as re
import streamlit as st


chars = string.digits + string.ascii_uppercase + string.ascii_lowercase + '_$'
tabs = None

def compress(g):
    bs = [int(g[i:i + 2], 16) for i in range(0, len(g), 2)]

    def b64(v, l=4):
        return ''.join([chars[(v // (64 ** i)) % 64] for i in range(l)][::-1])

    return ''.join([b64(bs[0], 2)] + [b64((bs[i] << 16) + (bs[i + 1] << 8) + bs[i + 2]) for i in range(1, 16, 3)])

def revit_id_to_guid(sheet = pd.DataFrame, column = string):

    if not '-' in sheet[column]:

        return sheet[column]

    id_components = sheet[column].rsplit('-', 1)
    episode_id = id_components[0]
    element_id = id_components[1]
    revit_end_start = episode_id.rsplit('-', 1)
    episode_id_base10 = int(element_id, 16)
    revit_end_base10 = int(revit_end_start[1], 16)
    base10_components = episode_id_base10 ^ revit_end_base10
    guid = revit_end_start[0] + '-' + hex(base10_components)[2:]

    try:
        guid = compress(uuid.UUID(guid).hex)

    except ValueError:

        guid = sheet[column]

    return guid
    

def download_button(object_to_download, download_filename, button_text, pickle_it=False):
    """
    Generates a link to download the given object_to_download.
    Params:
    ------
    object_to_download:  The object to be downloaded.
    download_filename (str): filename and extension of file. e.g. mydata.csv,
    some_txt_output.txt download_link_text (str): Text to display for download
    link.
    button_text (str): Text to display on download button (e.g. 'click here to download file')
    pickle_it (bool): If True, pickle file.
    Returns:
    -------
    (str): the anchor tag to download object_to_download
    Examples:
    --------
    download_link(your_df, 'YOUR_DF.csv', 'Click to download data!')
    download_link(your_str, 'YOUR_STRING.txt', 'Click to download text!')
    """
    if pickle_it:
        try:
            object_to_download = pickle.dumps(object_to_download)
        except pickle.PicklingError as e:
            st.write(e)
            return None

    else:
        if isinstance(object_to_download, bytes):
            pass

        elif isinstance(object_to_download, pd.DataFrame):
            #object_to_download = object_to_download.to_csv(index=False)
            towrite = io.BytesIO()
            object_to_download = object_to_download.to_excel(
                towrite,
                encoding='utf-8',
                index=False,
                header=True,
                na_rep='n/a',
            )
            towrite.seek(0)

        # Try JSON encode for everything else
        else:
            object_to_download = json.dumps(object_to_download)

    try:
        # some strings <-> bytes conversions necessary here
        b64 = base64.b64encode(object_to_download.encode()).decode()

    except AttributeError as e:
        b64 = base64.b64encode(towrite.read()).decode()

    button_uuid = str(uuid.uuid4()).replace('-', '')
    button_id = re.sub('\d+', '', button_uuid)

    custom_css = f""" 
        <style>
            #{button_id} {{
                display: inline-flex;
                align-items: center;
                justify-content: center;
                background-color: rgb(255, 255, 255);
                color: rgb(38, 39, 48);
                padding: .25rem .75rem;
                position: relative;
                text-decoration: none;
                border-radius: 4px;
                border-width: 1px;
                border-style: solid;
                border-color: rgb(230, 234, 241);
                border-image: initial;
            }} 
            #{button_id}:hover {{
                border-color: rgb(246, 51, 102);
                color: rgb(246, 51, 102);
            }}
            #{button_id}:active {{
                box-shadow: none;
                background-color: rgb(246, 51, 102);
                color: white;
                }}
        </style> """

    dl_link = custom_css + f'<a download="{download_filename}" id="{button_id}" href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}">{button_text}</a><br></br>'

    return dl_link

st.markdown(
    '''
        # Convert Revit IDs to GUIDs

        Provide any spreadsheet (using a dropbox link) that has a column of revit IDs. 
        A typical Revit ID is `60f91daf-3dd7-4283-a86d-24137b73f3da-0001fd0b`. 
        This app will convert the ID to `3CPy6r22DAahSW8AIIobik`.


        Select the sheet witin the spreadsheet and the column with the IDs.


        Only the selected sheet will be returned, you can cut and paste the sheet back into the origial spreadsheet.
    '''
)


cobie_file_button = st.text_input(
    "Dropbox link to spreadsheet file",
    key="cobie_file_button"
)

# In[ ]:

if cobie_file_button:

    cobie_file_path = st.session_state.cobie_file_button

    if '=0' in cobie_file_path:

        cobie_file_path = cobie_file_path.replace('=0', '=1')

    cobie_file = pd.ExcelFile(cobie_file_path)
    tabs = cobie_file.sheet_names

df = pd.DataFrame()

if tabs:

    selected_sheet = None
    selected_sheet = st.selectbox(
        'Select sheet for changing revit ids to COBie ids',
        tabs,
    )

    if selected_sheet:

        df = cobie_file.parse(selected_sheet)

    if type(df) == pd.DataFrame:

        # st.write(df)
        selected_column = None
        columns = df.columns
        selected_column = st.selectbox(
            'Select column with revit ids',
            columns,
        )

        convert = st.button(f"Sheet = '{selected_sheet}'  Column = '{selected_column}'  Convert IDs to COBie IDs")

    if convert:

            # df['COBieGUID'] = df.apply(compress)
            df[selected_column] = df.apply(
                revit_id_to_guid,
                column=selected_column,
                axis=1
            )

            st.markdown(
                download_button(
                    df,
                    'IFC_GUIDs.xlsx',
                    'Download sheet with IFC GUIDs',
                    pickle_it=False,
                ),
                unsafe_allow_html=True,
            )