#!/usr/bin/env python # coding: utf-8 import pandas as pd import base64 import uuid import io import pickle import string import simplejson as json import regex as re import streamlit as st chars = string.digits + string.ascii_uppercase + string.ascii_lowercase + '_$' tabs = None def compress(g): bs = [int(g[i:i + 2], 16) for i in range(0, len(g), 2)] def b64(v, l=4): return ''.join([chars[(v // (64 ** i)) % 64] for i in range(l)][::-1]) return ''.join([b64(bs[0], 2)] + [b64((bs[i] << 16) + (bs[i + 1] << 8) + bs[i + 2]) for i in range(1, 16, 3)]) def revit_id_to_guid(sheet = pd.DataFrame, column = string): if not '-' in sheet[column]: return sheet[column] id_components = sheet[column].rsplit('-', 1) episode_id = id_components[0] element_id = id_components[1] revit_end_start = episode_id.rsplit('-', 1) episode_id_base10 = int(element_id, 16) revit_end_base10 = int(revit_end_start[1], 16) base10_components = episode_id_base10 ^ revit_end_base10 guid = revit_end_start[0] + '-' + hex(base10_components)[2:] try: guid = compress(uuid.UUID(guid).hex) except ValueError: guid = sheet[column] return guid def download_button(object_to_download, download_filename, button_text, pickle_it=False): """ Generates a link to download the given object_to_download. Params: ------ object_to_download: The object to be downloaded. download_filename (str): filename and extension of file. e.g. mydata.csv, some_txt_output.txt download_link_text (str): Text to display for download link. button_text (str): Text to display on download button (e.g. 'click here to download file') pickle_it (bool): If True, pickle file. Returns: ------- (str): the anchor tag to download object_to_download Examples: -------- download_link(your_df, 'YOUR_DF.csv', 'Click to download data!') download_link(your_str, 'YOUR_STRING.txt', 'Click to download text!') """ if pickle_it: try: object_to_download = pickle.dumps(object_to_download) except pickle.PicklingError as e: st.write(e) return None else: if isinstance(object_to_download, bytes): pass elif isinstance(object_to_download, pd.DataFrame): #object_to_download = object_to_download.to_csv(index=False) towrite = io.BytesIO() object_to_download = object_to_download.to_excel( towrite, encoding='utf-8', index=False, header=True, na_rep='n/a', ) towrite.seek(0) # Try JSON encode for everything else else: object_to_download = json.dumps(object_to_download) try: # some strings <-> bytes conversions necessary here b64 = base64.b64encode(object_to_download.encode()).decode() except AttributeError as e: b64 = base64.b64encode(towrite.read()).decode() button_uuid = str(uuid.uuid4()).replace('-', '') button_id = re.sub('\d+', '', button_uuid) custom_css = f""" """ dl_link = custom_css + f'{button_text}

' return dl_link st.markdown( ''' # Convert Revit IDs to GUIDs Provide any spreadsheet (using a dropbox link) that has a column of revit IDs. A typical Revit ID is `60f91daf-3dd7-4283-a86d-24137b73f3da-0001fd0b`. This app will convert the ID to `3CPy6r22DAahSW8AIIobik`. Select the sheet witin the spreadsheet and the column with the IDs. Only the selected sheet will be returned, you can cut and paste the sheet back into the origial spreadsheet. ''' ) cobie_file_button = st.text_input( "Dropbox link to spreadsheet file", key="cobie_file_button" ) # In[ ]: if cobie_file_button: cobie_file_path = st.session_state.cobie_file_button if '=0' in cobie_file_path: cobie_file_path = cobie_file_path.replace('=0', '=1') cobie_file = pd.ExcelFile(cobie_file_path) tabs = cobie_file.sheet_names df = pd.DataFrame() if tabs: selected_sheet = None selected_sheet = st.selectbox( 'Select sheet for changing revit ids to COBie ids', tabs, ) if selected_sheet: df = cobie_file.parse(selected_sheet) if type(df) == pd.DataFrame: # st.write(df) selected_column = None columns = df.columns selected_column = st.selectbox( 'Select column with revit ids', columns, ) convert = st.button(f"Sheet = '{selected_sheet}' Column = '{selected_column}' Convert IDs to COBie IDs") if convert: # df['COBieGUID'] = df.apply(compress) df[selected_column] = df.apply( revit_id_to_guid, column=selected_column, axis=1 ) st.markdown( download_button( df, 'IFC_GUIDs.xlsx', 'Download sheet with IFC GUIDs', pickle_it=False, ), unsafe_allow_html=True, )