#!/usr/bin/env python
# coding: utf-8
import pandas as pd
import base64
import uuid
import io
import pickle
import string
import simplejson as json
import regex as re
import streamlit as st
chars = string.digits + string.ascii_uppercase + string.ascii_lowercase + '_$'
tabs = None
def compress(g):
bs = [int(g[i:i + 2], 16) for i in range(0, len(g), 2)]
def b64(v, l=4):
return ''.join([chars[(v // (64 ** i)) % 64] for i in range(l)][::-1])
return ''.join([b64(bs[0], 2)] + [b64((bs[i] << 16) + (bs[i + 1] << 8) + bs[i + 2]) for i in range(1, 16, 3)])
def revit_id_to_guid(sheet = pd.DataFrame, column = string):
if not '-' in sheet[column]:
return sheet[column]
id_components = sheet[column].rsplit('-', 1)
episode_id = id_components[0]
element_id = id_components[1]
revit_end_start = episode_id.rsplit('-', 1)
episode_id_base10 = int(element_id, 16)
revit_end_base10 = int(revit_end_start[1], 16)
base10_components = episode_id_base10 ^ revit_end_base10
guid = revit_end_start[0] + '-' + hex(base10_components)[2:]
try:
guid = compress(uuid.UUID(guid).hex)
except ValueError:
guid = sheet[column]
return guid
def download_button(object_to_download, download_filename, button_text, pickle_it=False):
"""
Generates a link to download the given object_to_download.
Params:
------
object_to_download: The object to be downloaded.
download_filename (str): filename and extension of file. e.g. mydata.csv,
some_txt_output.txt download_link_text (str): Text to display for download
link.
button_text (str): Text to display on download button (e.g. 'click here to download file')
pickle_it (bool): If True, pickle file.
Returns:
-------
(str): the anchor tag to download object_to_download
Examples:
--------
download_link(your_df, 'YOUR_DF.csv', 'Click to download data!')
download_link(your_str, 'YOUR_STRING.txt', 'Click to download text!')
"""
if pickle_it:
try:
object_to_download = pickle.dumps(object_to_download)
except pickle.PicklingError as e:
st.write(e)
return None
else:
if isinstance(object_to_download, bytes):
pass
elif isinstance(object_to_download, pd.DataFrame):
#object_to_download = object_to_download.to_csv(index=False)
towrite = io.BytesIO()
object_to_download = object_to_download.to_excel(
towrite,
encoding='utf-8',
index=False,
header=True,
na_rep='n/a',
)
towrite.seek(0)
# Try JSON encode for everything else
else:
object_to_download = json.dumps(object_to_download)
try:
# some strings <-> bytes conversions necessary here
b64 = base64.b64encode(object_to_download.encode()).decode()
except AttributeError as e:
b64 = base64.b64encode(towrite.read()).decode()
button_uuid = str(uuid.uuid4()).replace('-', '')
button_id = re.sub('\d+', '', button_uuid)
custom_css = f"""
"""
dl_link = custom_css + f'{button_text}
'
return dl_link
st.markdown(
'''
# Convert Revit IDs to GUIDs
Provide any spreadsheet (using a dropbox link) that has a column of revit IDs.
A typical Revit ID is `60f91daf-3dd7-4283-a86d-24137b73f3da-0001fd0b`.
This app will convert the ID to `3CPy6r22DAahSW8AIIobik`.
Select the sheet witin the spreadsheet and the column with the IDs.
Only the selected sheet will be returned, you can cut and paste the sheet back into the origial spreadsheet.
'''
)
cobie_file_button = st.text_input(
"Dropbox link to spreadsheet file",
key="cobie_file_button"
)
# In[ ]:
if cobie_file_button:
cobie_file_path = st.session_state.cobie_file_button
if '=0' in cobie_file_path:
cobie_file_path = cobie_file_path.replace('=0', '=1')
cobie_file = pd.ExcelFile(cobie_file_path)
tabs = cobie_file.sheet_names
df = pd.DataFrame()
if tabs:
selected_sheet = None
selected_sheet = st.selectbox(
'Select sheet for changing revit ids to COBie ids',
tabs,
)
if selected_sheet:
df = cobie_file.parse(selected_sheet)
if type(df) == pd.DataFrame:
# st.write(df)
selected_column = None
columns = df.columns
selected_column = st.selectbox(
'Select column with revit ids',
columns,
)
convert = st.button(f"Sheet = '{selected_sheet}' Column = '{selected_column}' Convert IDs to COBie IDs")
if convert:
# df['COBieGUID'] = df.apply(compress)
df[selected_column] = df.apply(
revit_id_to_guid,
column=selected_column,
axis=1
)
st.markdown(
download_button(
df,
'IFC_GUIDs.xlsx',
'Download sheet with IFC GUIDs',
pickle_it=False,
),
unsafe_allow_html=True,
)