Spaces:
Runtime error
Runtime error
Commit
β’
6407a06
1
Parent(s):
3b4c604
Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,6 @@ RETRIEVER_URL = os.getenv("RETRIEVER_URL")
|
|
17 |
RANKER_URL = os.getenv("RANKER_URL")
|
18 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
19 |
|
20 |
-
|
21 |
class Retriever(EmbeddingRetriever):
|
22 |
def __init__(
|
23 |
self,
|
@@ -120,17 +119,28 @@ EXAMPLES = [
|
|
120 |
"The Sphinx is in Egypt.",
|
121 |
]
|
122 |
|
123 |
-
if os.path.exists("faiss_document_store.db"):
|
124 |
-
|
125 |
-
|
126 |
-
document_store
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
retriever = Retriever(document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE)
|
133 |
-
document_store.update_embeddings(retriever=retriever)
|
134 |
ranker = Ranker()
|
135 |
|
136 |
pipe = Pipeline()
|
@@ -142,12 +152,12 @@ def run(query: str) -> dict:
|
|
142 |
output = pipe.run(query=query)
|
143 |
|
144 |
return (
|
145 |
-
f"Closest document(s): {[output['documents'][i].content for i in range(TOP_K)]}"
|
146 |
)
|
147 |
|
148 |
|
149 |
-
# warm up
|
150 |
run("What is the capital of France?")
|
|
|
151 |
|
152 |
gr.Interface(
|
153 |
fn=run,
|
|
|
17 |
RANKER_URL = os.getenv("RANKER_URL")
|
18 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
19 |
|
|
|
20 |
class Retriever(EmbeddingRetriever):
|
21 |
def __init__(
|
22 |
self,
|
|
|
119 |
"The Sphinx is in Egypt.",
|
120 |
]
|
121 |
|
122 |
+
if os.path.exists("faiss_document_store.db") and os.path.exists("faiss_index"):
|
123 |
+
document_store = FAISSDocumentStore.load("faiss_index")
|
124 |
+
retriever = Retriever(
|
125 |
+
document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE
|
126 |
+
)
|
127 |
+
else:
|
128 |
+
try:
|
129 |
+
os.remove("faiss_index")
|
130 |
+
os.remove("faiss_document_store.db")
|
131 |
+
except FileNotFoundError:
|
132 |
+
pass
|
133 |
+
|
134 |
+
document_store = FAISSDocumentStore(embedding_dim=384, return_embedding=True)
|
135 |
+
document_store.write_documents(
|
136 |
+
[Document(content=d, id=i) for i, d in enumerate(EXAMPLES)]
|
137 |
+
)
|
138 |
+
retriever = Retriever(
|
139 |
+
document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE
|
140 |
+
)
|
141 |
+
document_store.update_embeddings(retriever=retriever)
|
142 |
+
document_store.save(index_path="faiss_index")
|
143 |
|
|
|
|
|
144 |
ranker = Ranker()
|
145 |
|
146 |
pipe = Pipeline()
|
|
|
152 |
output = pipe.run(query=query)
|
153 |
|
154 |
return (
|
155 |
+
f"Closest ({TOP_K}) document(s): {[output['documents'][i].content for i in range(TOP_K)]}"
|
156 |
)
|
157 |
|
158 |
|
|
|
159 |
run("What is the capital of France?")
|
160 |
+
print("Warmed up successfully!")
|
161 |
|
162 |
gr.Interface(
|
163 |
fn=run,
|