from haystack.document_stores.faiss import FAISSDocumentStore
from haystack.nodes.retriever import EmbeddingRetriever
from haystack.nodes.ranker import BaseRanker
from haystack.pipelines import Pipeline
from haystack.document_stores.base import BaseDocumentStore
from haystack.schema import Document
from typing import Optional, List
from huggingface_hub import get_inference_endpoint
from datasets import load_dataset
from time import perf_counter
import gradio as gr
import numpy as np
import requests
import os
TOP_K = 2
BATCH_SIZE = 16
HF_TOKEN = os.getenv("HF_TOKEN")
RANKER_URL = os.getenv("RANKER_URL")
RETRIEVER_URL = os.getenv("RETRIEVER_URL")
RETRIEVER_IE = get_inference_endpoint(
"fastrag-retriever", namespace="optimum-intel", token=HF_TOKEN
)
RANKER_IE = get_inference_endpoint(
"fastrag-ranker", namespace="optimum-intel", token=HF_TOKEN
)
def check_inference_endpoints():
RETRIEVER_IE.update()
RANKER_IE.update()
messages = []
if RETRIEVER_IE.status in ["initializing", "pending"]:
messages += [
f"Retriever Inference Endpoint is {RETRIEVER_IE.status}. Please wait a few seconds and try again."
]
elif RETRIEVER_IE.status in ["paused", "scaledToZero"]:
messages += [
f"Retriever Inference Endpoint is {RETRIEVER_IE.status}. Resuming it. Please wait a few seconds and try again."
]
RETRIEVER_IE.resume()
if RANKER_IE.status in ["initializing", "pending"]:
messages += [
f"Ranker Inference Endpoint is {RANKER_IE.status}. Please wait a few seconds and try again."
]
elif RANKER_IE.status in ["paused", "scaledToZero"]:
messages += [
f"Ranker Inference Endpoint is {RANKER_IE.status}. Resuming it. Please wait a few seconds and try again."
]
RANKER_IE.resume()
if len(messages) > 0:
return "
".join(messages)
else:
return None
def post(url, payload):
response = requests.post(
url,
json=payload,
headers={"Authorization": f"Bearer {HF_TOKEN}"},
)
return response.json()
def method_timer(method):
def timed(self, *args, **kw):
start_time = perf_counter()
result = method(self, *args, **kw)
end_time = perf_counter()
print(
f"{self.__class__.__name__}.{method.__name__} took {end_time - start_time} seconds"
)
return result
return timed
class Retriever(EmbeddingRetriever):
def __init__(
self,
document_store: Optional[BaseDocumentStore] = None,
top_k: int = 10,
batch_size: int = 32,
scale_score: bool = True,
):
self.document_store = document_store
self.top_k = top_k
self.batch_size = batch_size
self.scale_score = scale_score
@method_timer
def embed_queries(self, queries: List[str]) -> np.ndarray:
payload = {"queries": queries, "inputs": ""}
response = post(RETRIEVER_URL, payload)
if "error" in response:
raise gr.Error(response["error"])
arrays = np.array(response)
return arrays
@method_timer
def embed_documents(self, documents: List[Document]) -> np.ndarray:
documents = [d.to_dict() for d in documents]
for doc in documents:
doc["embedding"] = None
payload = {"documents": documents, "inputs": ""}
response = post(RETRIEVER_URL, payload)
if "error" in response:
raise gr.Error(response["error"])
arrays = np.array(response)
return arrays
class Ranker(BaseRanker):
@method_timer
def predict(
self, query: str, documents: List[Document], top_k: Optional[int] = None
) -> List[Document]:
documents = [d.to_dict() for d in documents]
for doc in documents:
doc["embedding"] = None
payload = {"query": query, "documents": documents, "top_k": top_k, "inputs": ""}
response = post(RANKER_URL, payload)
if "error" in response:
raise gr.Error(response["error"])
return [Document.from_dict(d) for d in response]
@method_timer
def predict_batch(
self,
queries: List[str],
documents: List[List[Document]],
batch_size: Optional[int] = None,
top_k: Optional[int] = None,
) -> List[List[Document]]:
documents = [[d.to_dict() for d in docs] for docs in documents]
for docs in documents:
for doc in docs:
doc["embedding"] = None
payload = {
"queries": queries,
"documents": documents,
"batch_size": batch_size,
"top_k": top_k,
"inputs": "",
}
response = post(RANKER_URL, payload)
if "error" in response:
raise gr.Error(response["error"])
return [[Document.from_dict(d) for d in docs] for docs in response]
if (
os.path.exists("/data/faiss_document_store.db")
and os.path.exists("/data/faiss_index.json")
and os.path.exists("/data/faiss_index")
):
document_store = FAISSDocumentStore.load("/data/faiss_index")
retriever = Retriever(
document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE
)
document_store.save(index_path="/data/faiss_index")
else:
for file in [
"/data/faiss_document_store.db",
"/data/faiss_index.json",
"/data/faiss_index",
]:
try:
os.remove(file)
except FileNotFoundError:
pass
document_store = FAISSDocumentStore(
sql_url="sqlite:////data/faiss_document_store.db",
return_embedding=True,
embedding_dim=384,
)
document_store.write_documents(
load_dataset("bilgeyucel/seven-wonders", split="train")
)
retriever = Retriever(
document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE
)
document_store.update_embeddings(retriever=retriever)
document_store.save(index_path="/data/faiss_index")
ranker = Ranker()
pipe = Pipeline()
pipe.add_node(component=retriever, name="Retriever", inputs=["Query"])
pipe.add_node(component=ranker, name="Ranker", inputs=["Retriever"])
def run(query: str) -> dict:
message = check_inference_endpoints()
if message is not None:
return f"""
{message}
""" pipe_output = pipe.run(query=query) output = f"""ID: {doc.id}
Score: {doc.score}
Content: {doc.content}
""" return output examples = [ "Where is Gardens of Babylon?", "Why did people build Great Pyramid of Giza?", "What does Rhodes Statue look like?", "Why did people visit the Temple of Artemis?", "What is the importance of Colossus of Rhodes?", "What happened to the Tomb of Mausolus?", "How did Colossus of Rhodes collapse?", ] input_text = gr.components.Textbox( label="Query", placeholder="Enter a query", value=examples[0], lines=1 ) output_html = gr.components.HTML(label="Documents") gr.Interface( fn=run, inputs=input_text, outputs=output_html, examples=examples, cache_examples=False, allow_flagging="never", title="End-to-End Retrieval & Ranking with Hugging Face Inference Endpoints and Spaces", description="""## A [haystack](https://haystack.deepset.ai/) pipeline with the following components - Document Store: A [FAISS document store](https://github.com/facebookresearch/faiss/tree/main) containing the [`seven-wonders` dataset](https://huggingface.co/datasets/bilgeyucel/seven-wonders), created on this Space's [persistent storage](https://huggingface.co/docs/hub/en/spaces-storage). - Retriever: [Quantized FastRAG Retriever](https://huggingface.co/optimum-intel/fastrag-retriever) deployed on [Inference Endpoints](https://huggingface.co/docs/inference-endpoints/index) + Intel Sapphire Rapids CPU. - Ranker: [Quantized FastRAG Retriever](https://huggingface.co/optimum-intel/fastrag-ranker) deployed on [Inference Endpoints](https://huggingface.co/docs/inference-endpoints/index) + Intel Sapphire Rapids CPU. This Space is based on the optimizations demonstrated in the blog [CPU Optimized Embeddings with 🤗 Optimum Intel and fastRAG](https://huggingface.co/blog/intel-fast-embedding) """, ).launch()