from haystack.document_stores.faiss import FAISSDocumentStore from haystack.nodes.retriever import EmbeddingRetriever from haystack.nodes.ranker import BaseRanker from haystack.pipelines import Pipeline from haystack.document_stores.base import BaseDocumentStore from haystack.schema import Document from typing import Optional, List from huggingface_hub import get_inference_endpoint from datasets import load_dataset from time import perf_counter import gradio as gr import numpy as np import requests import os TOP_K = 2 BATCH_SIZE = 16 HF_TOKEN = os.getenv("HF_TOKEN") RANKER_URL = os.getenv("RANKER_URL") RETRIEVER_URL = os.getenv("RETRIEVER_URL") RETRIEVER_IE = get_inference_endpoint( "fastrag-retriever", namespace="optimum-intel", token=HF_TOKEN ) RANKER_IE = get_inference_endpoint( "fastrag-ranker", namespace="optimum-intel", token=HF_TOKEN ) def check_inference_endpoints(): RETRIEVER_IE.update() RANKER_IE.update() messages = [] if RETRIEVER_IE.status in ["initializing", "pending"]: messages += [ f"Retriever Inference Endpoint is {RETRIEVER_IE.status}. Please wait a few seconds and try again." ] elif RETRIEVER_IE.status in ["paused", "scaledToZero"]: messages += [ f"Retriever Inference Endpoint is {RETRIEVER_IE.status}. Resuming it. Please wait a few seconds and try again." ] RETRIEVER_IE.resume() if RANKER_IE.status in ["initializing", "pending"]: messages += [ f"Ranker Inference Endpoint is {RANKER_IE.status}. Please wait a few seconds and try again." ] elif RANKER_IE.status in ["paused", "scaledToZero"]: messages += [ f"Ranker Inference Endpoint is {RANKER_IE.status}. Resuming it. Please wait a few seconds and try again." ] RANKER_IE.resume() if len(messages) > 0: return "
".join(messages) else: return None def post(url, payload): response = requests.post( url, json=payload, headers={"Authorization": f"Bearer {HF_TOKEN}"}, ) return response.json() def method_timer(method): def timed(self, *args, **kw): start_time = perf_counter() result = method(self, *args, **kw) end_time = perf_counter() print( f"{self.__class__.__name__}.{method.__name__} took {end_time - start_time} seconds" ) return result return timed class Retriever(EmbeddingRetriever): def __init__( self, document_store: Optional[BaseDocumentStore] = None, top_k: int = 10, batch_size: int = 32, scale_score: bool = True, ): self.document_store = document_store self.top_k = top_k self.batch_size = batch_size self.scale_score = scale_score @method_timer def embed_queries(self, queries: List[str]) -> np.ndarray: payload = {"queries": queries, "inputs": ""} response = post(RETRIEVER_URL, payload) if "error" in response: raise gr.Error(response["error"]) arrays = np.array(response) return arrays @method_timer def embed_documents(self, documents: List[Document]) -> np.ndarray: documents = [d.to_dict() for d in documents] for doc in documents: doc["embedding"] = None payload = {"documents": documents, "inputs": ""} response = post(RETRIEVER_URL, payload) if "error" in response: raise gr.Error(response["error"]) arrays = np.array(response) return arrays class Ranker(BaseRanker): @method_timer def predict( self, query: str, documents: List[Document], top_k: Optional[int] = None ) -> List[Document]: documents = [d.to_dict() for d in documents] for doc in documents: doc["embedding"] = None payload = {"query": query, "documents": documents, "top_k": top_k, "inputs": ""} response = post(RANKER_URL, payload) if "error" in response: raise gr.Error(response["error"]) return [Document.from_dict(d) for d in response] @method_timer def predict_batch( self, queries: List[str], documents: List[List[Document]], batch_size: Optional[int] = None, top_k: Optional[int] = None, ) -> List[List[Document]]: documents = [[d.to_dict() for d in docs] for docs in documents] for docs in documents: for doc in docs: doc["embedding"] = None payload = { "queries": queries, "documents": documents, "batch_size": batch_size, "top_k": top_k, "inputs": "", } response = post(RANKER_URL, payload) if "error" in response: raise gr.Error(response["error"]) return [[Document.from_dict(d) for d in docs] for docs in response] if ( os.path.exists("/data/faiss_document_store.db") and os.path.exists("/data/faiss_index.json") and os.path.exists("/data/faiss_index") ): document_store = FAISSDocumentStore.load("/data/faiss_index") retriever = Retriever( document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE ) document_store.save(index_path="/data/faiss_index") else: for file in [ "/data/faiss_document_store.db", "/data/faiss_index.json", "/data/faiss_index", ]: try: os.remove(file) except FileNotFoundError: pass document_store = FAISSDocumentStore( sql_url="sqlite:////data/faiss_document_store.db", return_embedding=True, embedding_dim=384, ) document_store.write_documents( load_dataset("bilgeyucel/seven-wonders", split="train") ) retriever = Retriever( document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE ) document_store.update_embeddings(retriever=retriever) document_store.save(index_path="/data/faiss_index") ranker = Ranker() pipe = Pipeline() pipe.add_node(component=retriever, name="Retriever", inputs=["Query"]) pipe.add_node(component=ranker, name="Ranker", inputs=["Retriever"]) def run(query: str) -> dict: message = check_inference_endpoints() if message is not None: return f"""

Service Unavailable

{message}

""" pipe_output = pipe.run(query=query) output = f"""

Top {TOP_K} Documents

""" for i, doc in enumerate(pipe_output["documents"]): output += f"""

Document {i + 1}

ID: {doc.id}

Score: {doc.score}

Content: {doc.content}

""" return output examples = [ "Where is Gardens of Babylon?", "Why did people build Great Pyramid of Giza?", "What does Rhodes Statue look like?", "Why did people visit the Temple of Artemis?", "What is the importance of Colossus of Rhodes?", "What happened to the Tomb of Mausolus?", "How did Colossus of Rhodes collapse?", ] input_text = gr.components.Textbox( label="Query", placeholder="Enter a query", value=examples[0], lines=1 ) output_html = gr.components.HTML(label="Documents") gr.Interface( fn=run, inputs=input_text, outputs=output_html, examples=examples, cache_examples=False, allow_flagging="never", title="End-to-End Retrieval & Ranking with Hugging Face Inference Endpoints and Spaces", description="""## A [haystack](https://haystack.deepset.ai/) pipeline with the following components - Document Store: A [FAISS document store](https://github.com/facebookresearch/faiss/tree/main) containing the [`seven-wonders` dataset](https://huggingface.co/datasets/bilgeyucel/seven-wonders), created on this Space's [persistent storage](https://huggingface.co/docs/hub/en/spaces-storage). - Retriever: [Quantized FastRAG Retriever](https://huggingface.co/optimum-intel/fastrag-retriever) deployed on [Inference Endpoints](https://huggingface.co/docs/inference-endpoints/index) + Intel Sapphire Rapids CPU. - Ranker: [Quantized FastRAG Retriever](https://huggingface.co/optimum-intel/fastrag-ranker) deployed on [Inference Endpoints](https://huggingface.co/docs/inference-endpoints/index) + Intel Sapphire Rapids CPU. This Space is based on the optimizations demonstrated in the blog [CPU Optimized Embeddings with 🤗 Optimum Intel and fastRAG](https://huggingface.co/blog/intel-fast-embedding) """, ).launch()