Spaces:
Running
Running
import subprocess | |
import gradio as gr | |
import pandas as pd | |
from ansi2html import Ansi2HTMLConverter | |
ansi2html_converter = Ansi2HTMLConverter(inline=True) | |
def run_benchmark(kwargs): | |
for key, value in kwargs.copy().items(): | |
if key.label == "experiment_name": | |
experiment_name = value | |
kwargs.pop(key) | |
elif key.label == "model": | |
model = value | |
kwargs.pop(key) | |
elif key.label == "task": | |
task = value | |
kwargs.pop(key) | |
elif key.label == "device": | |
device = value | |
kwargs.pop(key) | |
elif key.label == "backend": | |
backend = value | |
kwargs.pop(key) | |
elif key.label == "benchmark": | |
benchmark = value | |
kwargs.pop(key) | |
else: | |
continue | |
arguments = [ | |
"optimum-benchmark", | |
"--config-dir", | |
"./configs", | |
"--config-name", | |
"base_config", | |
f"task={task}", | |
f"model={model}", | |
f"device={device}", | |
f"backend={backend}", | |
f"benchmark={benchmark}", | |
f"experiment_name={experiment_name}", | |
] | |
for component, value in kwargs.items(): | |
if f"{backend}." in component.label or f"{benchmark}." in component.label: | |
label = component.label.replace(f"{backend}.", "backend.").replace(f"{benchmark}.", "benchmark.") | |
if isinstance(component, gr.Dataframe): | |
for sub_key, sub_value in zip(component.headers, value[0]): | |
arguments.append(f"++{label}.{sub_key}={sub_value}") | |
else: | |
arguments.append(f"{label}={value}") | |
command = "<br>".join(arguments) | |
html_text = f"<h3>Running command:</h3>{command}" | |
yield gr.update(value=html_text), gr.update(interactive=False), gr.update(visible=False) | |
# stream subprocess output | |
process = subprocess.Popen( | |
arguments, | |
stdout=subprocess.PIPE, | |
stderr=subprocess.STDOUT, | |
universal_newlines=True, | |
) | |
ansi_text = "" | |
for ansi_line in iter(process.stdout.readline, ""): | |
# stream process output to stdout | |
print(ansi_line, end="") | |
# skip torch.distributed.nn.jit.instantiator messages | |
if "torch.distributed.nn.jit.instantiator" in ansi_line: | |
continue | |
# if the last message is a download message (contains "Downloading ") then remove it and replace it with a new one | |
if "Downloading " in ansi_text and "Downloading " in ansi_line: | |
ansi_text = ansi_text.split("\n")[:-2] | |
print(ansi_text) | |
ansi_text.append(ansi_line) | |
ansi_text = "\n".join(ansi_text) | |
else: | |
# append line to ansi text | |
ansi_text += ansi_line | |
# convert ansi to html | |
html_text = ansi2html_converter.convert(ansi_text) | |
# stream html output to gradio | |
yield gr.update(value=html_text), gr.update(interactive=False), gr.update(visible=False) | |
if process.returncode != 0: | |
table = pd.read_csv(f"runs/{experiment_name}/{benchmark}_results.csv", index_col=0) | |
table_update = gr.update(visible=True, value={"headers": list(table.columns), "data": table.values.tolist()}) | |
else: | |
table_update = gr.update(visible=False) | |
yield gr.update(value=html_text), gr.update(interactive=True), table_update | |
return | |