Spaces:
Running
Running
Commit
•
a6d3fdf
1
Parent(s):
77d2cc4
new UI
Browse files- app.py +156 -140
- config_store.py +64 -338
- configs/base_config.yaml +0 -15
- requirements.txt +1 -1
- run.py +0 -189
app.py
CHANGED
@@ -1,181 +1,197 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
5 |
-
NVIDIA_AVAILABLE = (
|
6 |
-
subprocess.run(
|
7 |
-
"nvidia-smi",
|
8 |
-
shell=True,
|
9 |
-
stdout=subprocess.DEVNULL,
|
10 |
-
stderr=subprocess.DEVNULL,
|
11 |
-
).returncode
|
12 |
-
== 0
|
13 |
-
)
|
14 |
-
|
15 |
-
if NVIDIA_AVAILABLE:
|
16 |
-
DEVICES = ["cpu", "cuda"]
|
17 |
-
if importlib.util.find_spec("optimum_benchmark") is None:
|
18 |
-
os.system(
|
19 |
-
"pip install optimum-benchmark[onnxruntime-gpu,openvino,neural-compressor,diffusers,peft]@git+https://github.com/huggingface/optimum-benchmark.git"
|
20 |
-
)
|
21 |
-
os.system("pip uninstall onnxruntime onnxruntime-gpu -y")
|
22 |
-
os.system("pip install onnxruntime-gpu")
|
23 |
-
else:
|
24 |
-
DEVICES = ["cpu"]
|
25 |
-
if importlib.util.find_spec("optimum_benchmark") is None:
|
26 |
-
os.system(
|
27 |
-
"pip install optimum-benchmark[onnxruntime,openvino,neural-compressor,diffusers,peft]@git+https://github.com/huggingface/optimum-benchmark.git"
|
28 |
-
)
|
29 |
-
|
30 |
-
|
31 |
-
BACKENDS = ["pytorch", "onnxruntime", "openvino", "neural-compressor"]
|
32 |
-
BENCHMARKS = ["inference", "training"]
|
33 |
-
|
34 |
-
|
35 |
-
import random
|
36 |
import gradio as gr
|
37 |
-
from optimum_benchmark.task_utils import (
|
38 |
-
TASKS_TO_AUTOMODELS,
|
39 |
-
infer_task_from_model_name_or_path,
|
40 |
-
)
|
41 |
-
from run import run_benchmark
|
42 |
from config_store import (
|
43 |
-
get_training_config,
|
44 |
get_inference_config,
|
45 |
-
get_neural_compressor_config,
|
46 |
get_onnxruntime_config,
|
47 |
get_openvino_config,
|
48 |
get_pytorch_config,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
)
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
52 |
# add image
|
53 |
gr.Markdown(
|
54 |
"""<img src="https://huggingface.co/spaces/optimum/optimum-benchmark-ui/resolve/main/huggy_bench.png" style="display: block; margin-left: auto; margin-right: auto; width: 30%;">"""
|
55 |
)
|
|
|
56 |
# title text
|
57 |
-
gr.Markdown("<h1 style='text-align: center'>🤗 Optimum-Benchmark
|
58 |
|
59 |
# explanation text
|
60 |
gr.HTML(
|
61 |
"<h3 style='text-align: center'>"
|
62 |
-
"Zero code Gradio interface of
|
|
|
|
|
|
|
|
|
63 |
"</h3>"
|
64 |
-
"<p style='text-align: center'>"
|
65 |
-
"Note: <a href='https://huggingface.co/spaces/optimum/optimum-benchmark-ui?duplicate=true'>Duplicate this space</a> and change its hardware to enable CUDA device<br>"
|
66 |
-
"or <a href='https://huggingface.co/spaces/optimum/optimum-benchmark-ui?docker=true'>Run with Docker</a> locally to target your own hardware."
|
67 |
-
"</p>"
|
68 |
)
|
69 |
|
70 |
-
model = gr.
|
71 |
label="model",
|
72 |
-
|
73 |
-
|
|
|
74 |
)
|
75 |
task = gr.Dropdown(
|
76 |
label="task",
|
77 |
-
|
78 |
-
|
79 |
-
info="Task to run the benchmark on.
|
80 |
-
)
|
81 |
-
device = gr.Dropdown(
|
82 |
-
value="cpu",
|
83 |
-
label="device",
|
84 |
-
choices=DEVICES,
|
85 |
-
info="Device to run the benchmark on. make sure to duplicate the space if you wanna run on CUDA devices.",
|
86 |
-
)
|
87 |
-
experiment = gr.Textbox(
|
88 |
-
label="experiment_name",
|
89 |
-
value=f"awesome-experiment-{random.randint(0, 100000)}",
|
90 |
-
info="Name of the experiment. Will be used to create a folder where results are stored.",
|
91 |
)
|
92 |
-
model.submit(fn=infer_task_from_model_name_or_path, inputs=model, outputs=task)
|
93 |
|
94 |
with gr.Row():
|
95 |
-
with gr.
|
96 |
-
|
97 |
-
backend = gr.Dropdown(
|
98 |
-
label="backend",
|
99 |
-
choices=BACKENDS,
|
100 |
-
value=BACKENDS[0],
|
101 |
-
info="Backend to run the benchmark on.",
|
102 |
-
)
|
103 |
-
|
104 |
-
with gr.Row() as backend_configs:
|
105 |
-
with gr.Accordion(label="backend options", open=False, visible=True):
|
106 |
-
pytorch_config = get_pytorch_config()
|
107 |
-
with gr.Accordion(label="backend config", open=False, visible=False):
|
108 |
-
onnxruntime_config = get_onnxruntime_config()
|
109 |
-
with gr.Accordion(label="backend config", open=False, visible=False):
|
110 |
-
openvino_config = get_openvino_config()
|
111 |
-
with gr.Accordion(label="backend config", open=False, visible=False):
|
112 |
-
neural_compressor_config = get_neural_compressor_config()
|
113 |
-
|
114 |
-
# hide backend configs based on backend
|
115 |
-
backend.change(
|
116 |
-
inputs=backend,
|
117 |
-
outputs=backend_configs.children,
|
118 |
-
fn=lambda value: [gr.update(visible=value == key) for key in BACKENDS],
|
119 |
-
)
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
)
|
129 |
-
|
130 |
-
with gr.Row() as benchmark_configs:
|
131 |
-
with gr.Accordion(label="benchmark Config", open=False, visible=True):
|
132 |
-
inference_config = get_inference_config()
|
133 |
-
with gr.Accordion(label="benchmark Config", open=False, visible=False):
|
134 |
-
training_config = get_training_config()
|
135 |
-
|
136 |
-
# hide benchmark configs based on benchmark
|
137 |
-
benchmark.change(
|
138 |
-
inputs=benchmark,
|
139 |
-
outputs=benchmark_configs.children,
|
140 |
-
fn=lambda value: [gr.update(visible=value == key) for key in BENCHMARKS],
|
141 |
-
)
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
info="Check this box to compare your chosen configuration to the baseline configuration.",
|
147 |
-
)
|
148 |
|
149 |
button = gr.Button(value="Run Benchmark", variant="primary")
|
150 |
-
|
151 |
-
|
152 |
-
table_output = gr.Dataframe(visible=False)
|
153 |
|
154 |
button.click(
|
155 |
fn=run_benchmark,
|
156 |
inputs={
|
157 |
-
experiment,
|
158 |
-
baseline,
|
159 |
-
model,
|
160 |
task,
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
*
|
165 |
-
*openvino_config,
|
166 |
-
*
|
167 |
-
*neural_compressor_config,
|
168 |
-
*inference_config,
|
169 |
-
*training_config,
|
170 |
},
|
171 |
-
outputs=[html_output
|
172 |
-
|
173 |
-
)
|
174 |
-
button.click(
|
175 |
-
fn=lambda: f"awesome-experiment-{random.randint(0, 100000)}",
|
176 |
-
inputs=[],
|
177 |
-
outputs=experiment,
|
178 |
-
queue=True,
|
179 |
)
|
180 |
|
181 |
-
|
|
|
|
1 |
import os
|
2 |
+
import time
|
3 |
+
from huggingface_hub import create_repo, whoami
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
5 |
from config_store import (
|
|
|
6 |
get_inference_config,
|
|
|
7 |
get_onnxruntime_config,
|
8 |
get_openvino_config,
|
9 |
get_pytorch_config,
|
10 |
+
get_process_config,
|
11 |
+
)
|
12 |
+
from optimum_benchmark.backends.openvino.utils import TASKS_TO_OVMODEL
|
13 |
+
from optimum_benchmark.backends.transformers_utils import TASKS_TO_MODEL_LOADERS
|
14 |
+
from optimum_benchmark.backends.onnxruntime.utils import TASKS_TO_ORTMODELS
|
15 |
+
from optimum_benchmark.backends.ipex.utils import TASKS_TO_IPEXMODEL
|
16 |
+
from optimum_benchmark import (
|
17 |
+
BenchmarkConfig,
|
18 |
+
PyTorchConfig,
|
19 |
+
OVConfig,
|
20 |
+
ORTConfig,
|
21 |
+
IPEXConfig,
|
22 |
+
ProcessConfig,
|
23 |
+
InferenceConfig,
|
24 |
+
Benchmark,
|
25 |
+
)
|
26 |
+
from optimum_benchmark.logging_utils import setup_logging
|
27 |
+
|
28 |
+
os.environ["LOG_TO_FILE"] = "0"
|
29 |
+
os.environ["LOG_LEVEL"] = "INFO"
|
30 |
+
setup_logging(level="INFO", prefix="MAIN-PROCESS")
|
31 |
+
|
32 |
+
DEVICE = "cpu"
|
33 |
+
BACKENDS = ["pytorch", "onnxruntime", "openvino", "ipex"]
|
34 |
+
|
35 |
+
CHOSEN_MODELS = ["bert-base-uncased", "gpt2"]
|
36 |
+
CHOSEN_TASKS = (
|
37 |
+
set(TASKS_TO_OVMODEL.keys())
|
38 |
+
& set(TASKS_TO_ORTMODELS.keys())
|
39 |
+
& set(TASKS_TO_IPEXMODEL.keys())
|
40 |
+
& set(TASKS_TO_MODEL_LOADERS.keys())
|
41 |
)
|
42 |
|
43 |
+
|
44 |
+
def run_benchmark(kwargs, oauth_token: gr.OAuthToken):
|
45 |
+
if oauth_token.token is None:
|
46 |
+
return "You must be logged in to use this space"
|
47 |
+
|
48 |
+
username = whoami(oauth_token.token)["name"]
|
49 |
+
create_repo(
|
50 |
+
f"{username}/benchmarks",
|
51 |
+
token=oauth_token.token,
|
52 |
+
repo_type="dataset",
|
53 |
+
exist_ok=True,
|
54 |
+
)
|
55 |
+
|
56 |
+
configs = {
|
57 |
+
"process": {},
|
58 |
+
"inference": {},
|
59 |
+
"onnxruntime": {},
|
60 |
+
"openvino": {},
|
61 |
+
"pytorch": {},
|
62 |
+
"ipex": {},
|
63 |
+
}
|
64 |
+
|
65 |
+
for key, value in kwargs.items():
|
66 |
+
if key.label == "model":
|
67 |
+
model = value
|
68 |
+
elif key.label == "task":
|
69 |
+
task = value
|
70 |
+
elif "." in key.label:
|
71 |
+
backend, argument = key.label.split(".")
|
72 |
+
configs[backend][argument] = value
|
73 |
+
else:
|
74 |
+
continue
|
75 |
+
|
76 |
+
process_config = ProcessConfig(**configs.pop("process"))
|
77 |
+
inference_config = InferenceConfig(**configs.pop("inference"))
|
78 |
+
|
79 |
+
configs["onnxruntime"] = ORTConfig(
|
80 |
+
task=task,
|
81 |
+
model=model,
|
82 |
+
device=DEVICE,
|
83 |
+
**configs["onnxruntime"],
|
84 |
+
)
|
85 |
+
configs["openvino"] = OVConfig(
|
86 |
+
task=task,
|
87 |
+
model=model,
|
88 |
+
device=DEVICE,
|
89 |
+
**configs["openvino"],
|
90 |
+
)
|
91 |
+
configs["pytorch"] = PyTorchConfig(
|
92 |
+
task=task,
|
93 |
+
model=model,
|
94 |
+
device=DEVICE,
|
95 |
+
**configs["pytorch"],
|
96 |
+
)
|
97 |
+
configs["ipex"] = IPEXConfig(
|
98 |
+
task=task,
|
99 |
+
model=model,
|
100 |
+
device=DEVICE,
|
101 |
+
**configs["ipex"],
|
102 |
+
)
|
103 |
+
|
104 |
+
for backend in configs:
|
105 |
+
benchmark_name = (
|
106 |
+
f"{model}-{task}-{backend}-{time.strftime('%Y-%m-%d-%H-%M-%S')}"
|
107 |
+
)
|
108 |
+
benchmark_config = BenchmarkConfig(
|
109 |
+
name=benchmark_name,
|
110 |
+
launcher=process_config,
|
111 |
+
scenario=inference_config,
|
112 |
+
backend=configs[backend],
|
113 |
+
)
|
114 |
+
benchmark_report = Benchmark.run(benchmark_config)
|
115 |
+
benchmark = Benchmark(config=benchmark_config, report=benchmark_report)
|
116 |
+
benchmark.push_to_hub(
|
117 |
+
repo_id=f"{username}/benchmarks",
|
118 |
+
subfolder=benchmark_name,
|
119 |
+
token=oauth_token.token,
|
120 |
+
)
|
121 |
+
|
122 |
+
return f"🚀 Benchmark {benchmark_name} has been pushed to {username}/benchmarks"
|
123 |
+
|
124 |
+
|
125 |
with gr.Blocks() as demo:
|
126 |
+
# add login button
|
127 |
+
gr.LoginButton(min_width=250)
|
128 |
+
|
129 |
# add image
|
130 |
gr.Markdown(
|
131 |
"""<img src="https://huggingface.co/spaces/optimum/optimum-benchmark-ui/resolve/main/huggy_bench.png" style="display: block; margin-left: auto; margin-right: auto; width: 30%;">"""
|
132 |
)
|
133 |
+
|
134 |
# title text
|
135 |
+
gr.Markdown("<h1 style='text-align: center'>🤗 Optimum-Benchmark Interface 🏋️</h1>")
|
136 |
|
137 |
# explanation text
|
138 |
gr.HTML(
|
139 |
"<h3 style='text-align: center'>"
|
140 |
+
"Zero code Gradio interface of "
|
141 |
+
"<a href='https://github.com/huggingface/optimum-benchmark.git'>"
|
142 |
+
"Optimum-Benchmark"
|
143 |
+
"</a>"
|
144 |
+
"<br>"
|
145 |
"</h3>"
|
|
|
|
|
|
|
|
|
146 |
)
|
147 |
|
148 |
+
model = gr.Dropdown(
|
149 |
label="model",
|
150 |
+
choices=CHOSEN_MODELS,
|
151 |
+
value="bert-base-uncased",
|
152 |
+
info="Model to run the benchmark on.",
|
153 |
)
|
154 |
task = gr.Dropdown(
|
155 |
label="task",
|
156 |
+
choices=CHOSEN_TASKS,
|
157 |
+
value="feature-extraction",
|
158 |
+
info="Task to run the benchmark on.",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
)
|
|
|
160 |
|
161 |
with gr.Row():
|
162 |
+
with gr.Accordion(label="Process Config", open=False, visible=True):
|
163 |
+
process_config = get_process_config()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
+
with gr.Row():
|
166 |
+
with gr.Accordion(label="PyTorch Config", open=True, visible=True):
|
167 |
+
pytorch_config = get_pytorch_config()
|
168 |
+
with gr.Accordion(label="OpenVINO Config", open=True, visible=True):
|
169 |
+
openvino_config = get_openvino_config()
|
170 |
+
with gr.Accordion(label="OnnxRuntime Config", open=True, visible=True):
|
171 |
+
onnxruntime_config = get_onnxruntime_config()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
+
with gr.Row():
|
174 |
+
with gr.Accordion(label="Scenario Config", open=False, visible=True):
|
175 |
+
inference_config = get_inference_config()
|
|
|
|
|
176 |
|
177 |
button = gr.Button(value="Run Benchmark", variant="primary")
|
178 |
+
|
179 |
+
html_output = gr.HTML()
|
|
|
180 |
|
181 |
button.click(
|
182 |
fn=run_benchmark,
|
183 |
inputs={
|
|
|
|
|
|
|
184 |
task,
|
185 |
+
model,
|
186 |
+
*process_config.values(),
|
187 |
+
*inference_config.values(),
|
188 |
+
*onnxruntime_config.values(),
|
189 |
+
*openvino_config.values(),
|
190 |
+
*pytorch_config.values(),
|
|
|
|
|
|
|
191 |
},
|
192 |
+
outputs=[html_output],
|
193 |
+
concurrency_limit=1,
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
)
|
195 |
|
196 |
+
|
197 |
+
demo.queue(max_size=10).launch()
|
config_store.py
CHANGED
@@ -1,401 +1,127 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
|
4 |
-
def
|
5 |
-
return
|
6 |
-
|
7 |
-
gr.Textbox(
|
8 |
-
value=42,
|
9 |
-
label=f"{backend_name}.seed",
|
10 |
-
info="Sets seed for reproducibility",
|
11 |
-
),
|
12 |
-
# inter_op_num_threads
|
13 |
-
gr.Textbox(
|
14 |
-
value="null",
|
15 |
-
label=f"{backend_name}.inter_op_num_threads",
|
16 |
-
info="Use null for default and -1 for cpu_count()",
|
17 |
-
),
|
18 |
-
# intra_op_num_threads
|
19 |
-
gr.Textbox(
|
20 |
-
value="null",
|
21 |
-
label=f"{backend_name}.intra_op_num_threads",
|
22 |
-
info="Use null for default and -1 for cpu_count()",
|
23 |
-
),
|
24 |
-
# initial_isolation_check
|
25 |
-
gr.Checkbox(
|
26 |
-
value=True,
|
27 |
-
label=f"{backend_name}.initial_isolation_check",
|
28 |
-
info="Makes sure that initially, no other process is running on the target device",
|
29 |
-
),
|
30 |
-
# continous_isolation_check
|
31 |
-
gr.Checkbox(
|
32 |
-
value=True,
|
33 |
-
label=f"{backend_name}.continous_isolation_check",
|
34 |
-
info="Makes sure that throughout the benchmark, no other process is running on the target device",
|
35 |
-
),
|
36 |
-
# delete_cache
|
37 |
-
gr.Checkbox(
|
38 |
value=False,
|
39 |
-
label=
|
40 |
-
info="
|
41 |
),
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
|
45 |
def get_pytorch_config():
|
46 |
-
return
|
47 |
-
|
48 |
-
|
49 |
-
value=False,
|
50 |
-
label="pytorch.no_weights",
|
51 |
-
info="Generates random weights instead of downloading pretrained ones",
|
52 |
-
),
|
53 |
-
# # device_map
|
54 |
-
# gr.Dropdown(
|
55 |
-
# value="null",
|
56 |
-
#
|
57 |
-
# label="pytorch.device_map",
|
58 |
-
# choices=["null", "auto", "sequential"],
|
59 |
-
# info="Use null for default and `auto` or `sequential` the same way as in `from_pretrained`",
|
60 |
-
# ),
|
61 |
-
# torch_dtype
|
62 |
-
gr.Dropdown(
|
63 |
-
value="null",
|
64 |
label="pytorch.torch_dtype",
|
65 |
-
choices=["
|
66 |
-
info="
|
67 |
-
),
|
68 |
-
# amp_autocast
|
69 |
-
gr.Checkbox(
|
70 |
-
value=False,
|
71 |
-
label="pytorch.amp_autocast",
|
72 |
-
info="Enables Pytorch's native Automatic Mixed Precision",
|
73 |
-
),
|
74 |
-
# amp_dtype
|
75 |
-
gr.Dropdown(
|
76 |
-
value="null",
|
77 |
-
label="pytorch.amp_dtype",
|
78 |
-
info="Use null for default",
|
79 |
-
choices=["null", "bfloat16", "float16"],
|
80 |
),
|
81 |
-
|
82 |
-
gr.Checkbox(
|
83 |
value=False,
|
84 |
label="pytorch.torch_compile",
|
85 |
info="Compiles the model with torch.compile",
|
86 |
),
|
87 |
-
|
88 |
-
gr.Checkbox(
|
89 |
-
value=False,
|
90 |
-
label="pytorch.bettertransformer",
|
91 |
-
info="Applies optimum.BetterTransformer for fastpath anf optimized attention",
|
92 |
-
),
|
93 |
-
# quantization_scheme
|
94 |
-
gr.Dropdown(
|
95 |
-
value="null",
|
96 |
-
choices=["null", "gptq", "bnb"],
|
97 |
-
label="pytorch.quantization_scheme",
|
98 |
-
info="Use null for no quantization",
|
99 |
-
),
|
100 |
-
# # use_ddp
|
101 |
-
# gr.Checkbox(
|
102 |
-
# value=False,
|
103 |
-
#
|
104 |
-
# label="pytorch.use_ddp",
|
105 |
-
# info="Uses DistributedDataParallel for multi-gpu training",
|
106 |
-
# ),
|
107 |
-
# peft_strategy
|
108 |
-
gr.Dropdown(
|
109 |
-
value="null",
|
110 |
-
choices=["null", "lora", "ada_lora", "prompt_tuning", "prefix_tuning", "p_tuning", "ia3"],
|
111 |
-
label="pytorch.peft_strategy",
|
112 |
-
info="Use null for no PEFT",
|
113 |
-
),
|
114 |
-
]
|
115 |
|
116 |
|
117 |
def get_onnxruntime_config():
|
118 |
-
return
|
119 |
-
|
120 |
-
gr.Checkbox(
|
121 |
-
value=False,
|
122 |
-
label="pytorch.no_weights",
|
123 |
-
info="Generates random weights instead of downloading pretrained ones",
|
124 |
-
),
|
125 |
-
# export
|
126 |
-
gr.Checkbox(
|
127 |
value=True,
|
128 |
label="onnxruntime.export",
|
129 |
info="Exports the model to ONNX",
|
130 |
),
|
131 |
-
|
132 |
-
gr.Checkbox(
|
133 |
value=True,
|
134 |
label="onnxruntime.use_cache",
|
135 |
info="Uses cached ONNX model if available",
|
136 |
),
|
137 |
-
|
138 |
-
|
139 |
-
value=False,
|
140 |
label="onnxruntime.use_merged",
|
141 |
info="Uses merged ONNX model if available",
|
142 |
),
|
143 |
-
|
144 |
-
|
145 |
-
value="null",
|
146 |
label="onnxruntime.torch_dtype",
|
147 |
-
choices=["
|
148 |
-
info="
|
149 |
-
),
|
150 |
-
# use_io_binding
|
151 |
-
gr.Checkbox(
|
152 |
-
value=True,
|
153 |
-
label="onnxruntime.use_io_binding",
|
154 |
-
info="Uses IO binding for inference",
|
155 |
-
),
|
156 |
-
# auto_optimization
|
157 |
-
gr.Dropdown(
|
158 |
-
value="null",
|
159 |
-
label="onnxruntime.auto_optimization",
|
160 |
-
choices=["null", "O1", "O2", "O3", "O4"],
|
161 |
-
info="Use null for default",
|
162 |
-
),
|
163 |
-
# auto_quantization
|
164 |
-
gr.Dropdown(
|
165 |
-
value="null",
|
166 |
-
label="onnxruntime.auto_quantization",
|
167 |
-
choices=["null", "arm64", "avx2", "avx512", "avx512_vnni", "tensorrt"],
|
168 |
-
info="Use null for default",
|
169 |
-
),
|
170 |
-
# optimization
|
171 |
-
gr.Checkbox(
|
172 |
-
value=False,
|
173 |
-
label="onnxruntime.optimization",
|
174 |
-
info="Enables manual optimization",
|
175 |
-
),
|
176 |
-
# optimization_config
|
177 |
-
gr.Dataframe(
|
178 |
-
type="array",
|
179 |
-
value=[["optimization_level"]],
|
180 |
-
headers=["1"],
|
181 |
-
row_count=(1, "static"),
|
182 |
-
col_count=(1, "dynamic"),
|
183 |
-
label="onnxruntime.optimization_config",
|
184 |
-
),
|
185 |
-
# quantization
|
186 |
-
gr.Checkbox(
|
187 |
-
value=False,
|
188 |
-
label="onnxruntime.quantization",
|
189 |
-
info="Enables manual quantization",
|
190 |
-
),
|
191 |
-
# quantization_config
|
192 |
-
gr.Dataframe(
|
193 |
-
type="array",
|
194 |
-
value=[["is_static"]],
|
195 |
-
headers=[False],
|
196 |
-
row_count=(1, "static"),
|
197 |
-
col_count=(1, "dynamic"),
|
198 |
-
label="onnxruntime.quantization_config",
|
199 |
-
info="Use null for default",
|
200 |
-
),
|
201 |
-
# calibration
|
202 |
-
gr.Checkbox(
|
203 |
-
value=False,
|
204 |
-
label="onnxruntime.calibration",
|
205 |
-
info="Enables calibration",
|
206 |
),
|
207 |
-
|
208 |
-
gr.Dataframe(
|
209 |
-
type="array",
|
210 |
-
value=[["glue"]],
|
211 |
-
headers=["dataset_name"],
|
212 |
-
row_count=(1, "static"),
|
213 |
-
col_count=(1, "dynamic"),
|
214 |
-
label="onnxruntime.calibration_config",
|
215 |
-
info="Use null for default",
|
216 |
-
),
|
217 |
-
# peft_strategy
|
218 |
-
gr.Dropdown(
|
219 |
-
value="null",
|
220 |
-
label="onnxruntime.peft_strategy",
|
221 |
-
choices=["null", "lora", "ada_lora", "prompt_tuning", "prefix_tuning", "p_tuning", "ia3"],
|
222 |
-
info="Use null for full parameters fine-tuning",
|
223 |
-
),
|
224 |
-
]
|
225 |
|
226 |
|
227 |
def get_openvino_config():
|
228 |
-
return
|
229 |
-
|
230 |
-
gr.Checkbox(
|
231 |
value=True,
|
232 |
label="openvino.export",
|
233 |
info="Exports the model to ONNX",
|
234 |
),
|
235 |
-
|
236 |
-
gr.Checkbox(
|
237 |
value=True,
|
238 |
label="openvino.use_cache",
|
239 |
info="Uses cached ONNX model if available",
|
240 |
),
|
241 |
-
|
242 |
-
|
243 |
-
value=False,
|
244 |
label="openvino.use_merged",
|
245 |
info="Uses merged ONNX model if available",
|
246 |
),
|
247 |
-
|
248 |
-
gr.Checkbox(
|
249 |
value=False,
|
250 |
label="openvino.reshape",
|
251 |
info="Reshapes the model to the input shape",
|
252 |
),
|
253 |
-
|
254 |
-
gr.Checkbox(
|
255 |
value=False,
|
256 |
label="openvino.half",
|
257 |
info="Converts model to half precision",
|
258 |
),
|
259 |
-
|
260 |
-
gr.Checkbox(
|
261 |
-
value=False,
|
262 |
-
label="openvino.quantization",
|
263 |
-
info="Enables quantization",
|
264 |
-
),
|
265 |
-
# quantization_config
|
266 |
-
gr.Dataframe(
|
267 |
-
type="array",
|
268 |
-
headers=["compression", "input_info", "save_onnx_model"],
|
269 |
-
value=[[None, None, None]],
|
270 |
-
row_count=(1, "static"),
|
271 |
-
col_count=(3, "dynamic"),
|
272 |
-
label="openvino.quantization_config",
|
273 |
-
),
|
274 |
-
# calibration
|
275 |
-
gr.Checkbox(
|
276 |
-
value=False,
|
277 |
-
label="openvino.calibration",
|
278 |
-
info="Enables calibration",
|
279 |
-
),
|
280 |
-
# calibration_config
|
281 |
-
gr.Dataframe(
|
282 |
-
type="array",
|
283 |
-
headers=["dataset_name"],
|
284 |
-
value=[["glue"]],
|
285 |
-
row_count=(1, "static"),
|
286 |
-
col_count=(1, "dynamic"),
|
287 |
-
label="openvino.calibration_config",
|
288 |
-
),
|
289 |
-
]
|
290 |
-
|
291 |
-
|
292 |
-
def get_neural_compressor_config():
|
293 |
-
return get_base_backend_config(backend_name="neural-compressor") + [
|
294 |
-
# ptq_quantization
|
295 |
-
gr.Checkbox(
|
296 |
-
value=False,
|
297 |
-
label="neural-compressor.ptq_quantization",
|
298 |
-
info="Enables post-training quantization",
|
299 |
-
),
|
300 |
-
# ptq_quantization_config
|
301 |
-
gr.Dataframe(
|
302 |
-
type="array",
|
303 |
-
headers=["device"],
|
304 |
-
value=[["cpu"]],
|
305 |
-
row_count=(1, "static"),
|
306 |
-
col_count=(1, "dynamic"),
|
307 |
-
label="neural-compressor.ptq_quantization_config",
|
308 |
-
),
|
309 |
-
# calibration
|
310 |
-
gr.Checkbox(
|
311 |
-
value=False,
|
312 |
-
label="neural-compressor.calibration",
|
313 |
-
info="Enables calibration",
|
314 |
-
),
|
315 |
-
# calibration_config
|
316 |
-
gr.Dataframe(
|
317 |
-
type="array",
|
318 |
-
headers=["dataset_name"],
|
319 |
-
value=[["glue"]],
|
320 |
-
row_count=(1, "static"),
|
321 |
-
col_count=(1, "dynamic"),
|
322 |
-
label="neural-compressor.calibration_config",
|
323 |
-
),
|
324 |
-
]
|
325 |
|
326 |
|
327 |
def get_inference_config():
|
328 |
-
return
|
329 |
-
|
330 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
value=10,
|
|
|
|
|
332 |
label="inference.duration",
|
333 |
-
info="Minimum duration of benchmark in seconds",
|
334 |
),
|
335 |
-
|
336 |
-
|
337 |
value=10,
|
338 |
-
|
339 |
-
|
|
|
|
|
340 |
),
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
info="Measures the peak memory footprint",
|
346 |
),
|
347 |
-
|
348 |
-
gr.Checkbox(
|
349 |
value=False,
|
350 |
-
label="inference.
|
351 |
-
info="Measures
|
352 |
-
),
|
353 |
-
# input_shapes
|
354 |
-
gr.Dataframe(
|
355 |
-
type="array",
|
356 |
-
value=[[2, 16]],
|
357 |
-
row_count=(1, "static"),
|
358 |
-
col_count=(2, "dynamic"),
|
359 |
-
label="inference.input_shapes",
|
360 |
-
headers=["batch_size", "sequence_length"],
|
361 |
-
info="Controllable input shapes, add more columns for more inputs",
|
362 |
-
),
|
363 |
-
# forward kwargs
|
364 |
-
gr.Dataframe(
|
365 |
-
type="array",
|
366 |
-
value=[[False]],
|
367 |
-
headers=["return_dict"],
|
368 |
-
row_count=(1, "static"),
|
369 |
-
col_count=(1, "dynamic"),
|
370 |
-
label="inference.forward_kwargs",
|
371 |
-
info="Keyword arguments for the forward pass, add more columns for more arguments",
|
372 |
-
),
|
373 |
-
]
|
374 |
-
|
375 |
-
|
376 |
-
def get_training_config():
|
377 |
-
return [
|
378 |
-
# warmup steps
|
379 |
-
gr.Textbox(
|
380 |
-
value=40,
|
381 |
-
label="training.warmup_steps",
|
382 |
-
),
|
383 |
-
# dataset_shapes
|
384 |
-
gr.Dataframe(
|
385 |
-
type="array",
|
386 |
-
value=[[500, 16]],
|
387 |
-
headers=["dataset_size", "sequence_length"],
|
388 |
-
row_count=(1, "static"),
|
389 |
-
col_count=(2, "dynamic"),
|
390 |
-
label="training.dataset_shapes",
|
391 |
-
),
|
392 |
-
# training_arguments
|
393 |
-
gr.Dataframe(
|
394 |
-
value=[[2]],
|
395 |
-
type="array",
|
396 |
-
row_count=(1, "static"),
|
397 |
-
col_count=(1, "dynamic"),
|
398 |
-
label="training.training_arguments",
|
399 |
-
headers=["per_device_train_batch_size"],
|
400 |
),
|
401 |
-
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
|
4 |
+
def get_process_config():
|
5 |
+
return {
|
6 |
+
"process.numactl": gr.Checkbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
value=False,
|
8 |
+
label="process.numactl",
|
9 |
+
info="Runs the model with numactl",
|
10 |
),
|
11 |
+
"process.numactl_kwargs": gr.Textbox(
|
12 |
+
value="",
|
13 |
+
label="process.numactl_kwargs",
|
14 |
+
info="Additional python dict of kwargs to pass to numactl",
|
15 |
+
),
|
16 |
+
}
|
17 |
|
18 |
|
19 |
def get_pytorch_config():
|
20 |
+
return {
|
21 |
+
"pytorch.torch_dtype": gr.Dropdown(
|
22 |
+
value="float32",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
label="pytorch.torch_dtype",
|
24 |
+
choices=["bfloat16", "float16", "float32", "auto"],
|
25 |
+
info="The dtype to use for the model",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
),
|
27 |
+
"pytorch.torch_compile": gr.Checkbox(
|
|
|
28 |
value=False,
|
29 |
label="pytorch.torch_compile",
|
30 |
info="Compiles the model with torch.compile",
|
31 |
),
|
32 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
def get_onnxruntime_config():
|
36 |
+
return {
|
37 |
+
"onnxruntime.export": gr.Checkbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
value=True,
|
39 |
label="onnxruntime.export",
|
40 |
info="Exports the model to ONNX",
|
41 |
),
|
42 |
+
"onnxruntime.use_cache": gr.Checkbox(
|
|
|
43 |
value=True,
|
44 |
label="onnxruntime.use_cache",
|
45 |
info="Uses cached ONNX model if available",
|
46 |
),
|
47 |
+
"onnxruntime.use_merged": gr.Checkbox(
|
48 |
+
value=True,
|
|
|
49 |
label="onnxruntime.use_merged",
|
50 |
info="Uses merged ONNX model if available",
|
51 |
),
|
52 |
+
"onnxruntime.torch_dtype": gr.Dropdown(
|
53 |
+
value="float32",
|
|
|
54 |
label="onnxruntime.torch_dtype",
|
55 |
+
choices=["bfloat16", "float16", "float32", "auto"],
|
56 |
+
info="The dtype to use for the model",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
),
|
58 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
def get_openvino_config():
|
62 |
+
return {
|
63 |
+
"openvino.export": gr.Checkbox(
|
|
|
64 |
value=True,
|
65 |
label="openvino.export",
|
66 |
info="Exports the model to ONNX",
|
67 |
),
|
68 |
+
"openvino.use_cache": gr.Checkbox(
|
|
|
69 |
value=True,
|
70 |
label="openvino.use_cache",
|
71 |
info="Uses cached ONNX model if available",
|
72 |
),
|
73 |
+
"openvino.use_merged": gr.Checkbox(
|
74 |
+
value=True,
|
|
|
75 |
label="openvino.use_merged",
|
76 |
info="Uses merged ONNX model if available",
|
77 |
),
|
78 |
+
"openvino.reshape": gr.Checkbox(
|
|
|
79 |
value=False,
|
80 |
label="openvino.reshape",
|
81 |
info="Reshapes the model to the input shape",
|
82 |
),
|
83 |
+
"openvino.half": gr.Checkbox(
|
|
|
84 |
value=False,
|
85 |
label="openvino.half",
|
86 |
info="Converts model to half precision",
|
87 |
),
|
88 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
|
91 |
def get_inference_config():
|
92 |
+
return {
|
93 |
+
"inference.warmup_runs": gr.Slider(
|
94 |
+
step=1,
|
95 |
+
value=10,
|
96 |
+
minimum=0,
|
97 |
+
maximum=10,
|
98 |
+
label="inference.warmup_runs",
|
99 |
+
info="Number of warmup runs",
|
100 |
+
),
|
101 |
+
"inference.duration": gr.Slider(
|
102 |
+
step=1,
|
103 |
value=10,
|
104 |
+
minimum=0,
|
105 |
+
maximum=10,
|
106 |
label="inference.duration",
|
107 |
+
info="Minimum duration of the benchmark in seconds",
|
108 |
),
|
109 |
+
"inference.iterations": gr.Slider(
|
110 |
+
step=1,
|
111 |
value=10,
|
112 |
+
minimum=0,
|
113 |
+
maximum=10,
|
114 |
+
label="inference.iterations",
|
115 |
+
info="Minimum number of iterations of the benchmark",
|
116 |
),
|
117 |
+
"inference.latency": gr.Checkbox(
|
118 |
+
value=True,
|
119 |
+
label="inference.latency",
|
120 |
+
info="Measures the latency of the model",
|
|
|
121 |
),
|
122 |
+
"inference.memory": gr.Checkbox(
|
|
|
123 |
value=False,
|
124 |
+
label="inference.memory",
|
125 |
+
info="Measures the peak memory consumption",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
),
|
127 |
+
}
|
configs/base_config.yaml
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
defaults:
|
2 |
-
- backend: null # default backend
|
3 |
-
- benchmark: null # default benchmark
|
4 |
-
- experiment # inheriting experiment schema
|
5 |
-
- _self_ # for hydra 1.1 compatibility
|
6 |
-
- override hydra/job_logging: colorlog # colorful logging
|
7 |
-
- override hydra/hydra_logging: colorlog # colorful logging
|
8 |
-
|
9 |
-
hydra:
|
10 |
-
run:
|
11 |
-
dir: runs/${experiment_name}
|
12 |
-
job:
|
13 |
-
chdir: true
|
14 |
-
env_set:
|
15 |
-
CUDA_VISIBLE_DEVICES: 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1 +1 @@
|
|
1 |
-
|
|
|
1 |
+
optimum-benchmark[oprnvino,onnxruntime,ipex]@git+https://github.com/huggingface/optimum-benchmark.git
|
run.py
DELETED
@@ -1,189 +0,0 @@
|
|
1 |
-
import subprocess
|
2 |
-
import gradio as gr
|
3 |
-
import pandas as pd
|
4 |
-
from ansi2html import Ansi2HTMLConverter
|
5 |
-
|
6 |
-
ansi2html_converter = Ansi2HTMLConverter(inline=True)
|
7 |
-
|
8 |
-
|
9 |
-
def run_benchmark(kwargs):
|
10 |
-
for key, value in kwargs.copy().items():
|
11 |
-
if key.label == "compare_to_baseline":
|
12 |
-
baseline = value
|
13 |
-
kwargs.pop(key)
|
14 |
-
elif key.label == "experiment_name":
|
15 |
-
experiment_name = value
|
16 |
-
kwargs.pop(key)
|
17 |
-
elif key.label == "model":
|
18 |
-
model = value
|
19 |
-
kwargs.pop(key)
|
20 |
-
elif key.label == "task":
|
21 |
-
task = value
|
22 |
-
kwargs.pop(key)
|
23 |
-
elif key.label == "device":
|
24 |
-
device = value
|
25 |
-
kwargs.pop(key)
|
26 |
-
elif key.label == "backend":
|
27 |
-
backend = value
|
28 |
-
kwargs.pop(key)
|
29 |
-
elif key.label == "benchmark":
|
30 |
-
benchmark = value
|
31 |
-
kwargs.pop(key)
|
32 |
-
else:
|
33 |
-
continue
|
34 |
-
|
35 |
-
if baseline:
|
36 |
-
baseline_arguments = [
|
37 |
-
"optimum-benchmark",
|
38 |
-
"--config-dir",
|
39 |
-
"./configs",
|
40 |
-
"--config-name",
|
41 |
-
"base_config",
|
42 |
-
f"backend=pytorch",
|
43 |
-
f"task={task}",
|
44 |
-
f"model={model}",
|
45 |
-
f"device={device}",
|
46 |
-
f"benchmark={benchmark}",
|
47 |
-
f"experiment_name=baseline_{experiment_name}",
|
48 |
-
]
|
49 |
-
for component, value in kwargs.items():
|
50 |
-
if f"{benchmark}." in component.label:
|
51 |
-
label = component.label.replace(f"{benchmark}.", "benchmark.")
|
52 |
-
if isinstance(component, gr.Dataframe):
|
53 |
-
for sub_key, sub_value in zip(component.headers, value[0]):
|
54 |
-
baseline_arguments.append(f"++{label}.{sub_key}={sub_value}")
|
55 |
-
else:
|
56 |
-
baseline_arguments.append(f"{label}={value}")
|
57 |
-
|
58 |
-
# yield from run_experiment(baseline_arguments) but get the return code
|
59 |
-
baseline_return_code, html_text = yield from run_experiment(baseline_arguments, "")
|
60 |
-
if baseline_return_code is not None and baseline_return_code != 0:
|
61 |
-
yield gr.update(value=html_text), gr.update(interactive=True), gr.update(visible=False)
|
62 |
-
return
|
63 |
-
else:
|
64 |
-
html_text = ""
|
65 |
-
|
66 |
-
arguments = [
|
67 |
-
"optimum-benchmark",
|
68 |
-
"--config-dir",
|
69 |
-
"./configs",
|
70 |
-
"--config-name",
|
71 |
-
"base_config",
|
72 |
-
f"task={task}",
|
73 |
-
f"model={model}",
|
74 |
-
f"device={device}",
|
75 |
-
f"backend={backend}",
|
76 |
-
f"benchmark={benchmark}",
|
77 |
-
f"experiment_name={experiment_name}",
|
78 |
-
]
|
79 |
-
for component, value in kwargs.items():
|
80 |
-
if f"{backend}." in component.label or f"{benchmark}." in component.label:
|
81 |
-
label = component.label.replace(f"{backend}.", "backend.").replace(f"{benchmark}.", "benchmark.")
|
82 |
-
|
83 |
-
if isinstance(component, gr.Dataframe):
|
84 |
-
for sub_key, sub_value in zip(component.headers, value[0]):
|
85 |
-
arguments.append(f"++{label}.{sub_key}={sub_value}")
|
86 |
-
else:
|
87 |
-
arguments.append(f"{label}={value}")
|
88 |
-
|
89 |
-
return_code, html_text = yield from run_experiment(arguments, html_text)
|
90 |
-
if return_code is not None and return_code != 0:
|
91 |
-
yield gr.update(value=html_text), gr.update(interactive=True), gr.update(visible=False)
|
92 |
-
return
|
93 |
-
|
94 |
-
if baseline:
|
95 |
-
baseline_table = pd.read_csv(f"runs/baseline_{experiment_name}/{benchmark}_results.csv", index_col=0)
|
96 |
-
table = pd.read_csv(f"runs/{experiment_name}/{benchmark}_results.csv", index_col=0)
|
97 |
-
# concat tables
|
98 |
-
table = pd.concat([baseline_table, table], axis=0)
|
99 |
-
table = postprocess_table(table, experiment_name)
|
100 |
-
else:
|
101 |
-
table = pd.read_csv(f"runs/{experiment_name}/{benchmark}_results.csv", index_col=0)
|
102 |
-
|
103 |
-
table_update = gr.update(visible=True, value={"headers": list(table.columns), "data": table.values.tolist()})
|
104 |
-
yield gr.update(value=html_text), gr.update(interactive=True), table_update
|
105 |
-
return
|
106 |
-
|
107 |
-
|
108 |
-
def run_experiment(args, html_text=""):
|
109 |
-
command = "<br>".join(args)
|
110 |
-
html_text += f"<h3>Running command:</h3>{command}"
|
111 |
-
yield gr.update(value=html_text), gr.update(interactive=False), gr.update(visible=False)
|
112 |
-
|
113 |
-
# stream subprocess output
|
114 |
-
process = subprocess.Popen(
|
115 |
-
args,
|
116 |
-
stdout=subprocess.PIPE,
|
117 |
-
stderr=subprocess.STDOUT,
|
118 |
-
universal_newlines=True,
|
119 |
-
)
|
120 |
-
|
121 |
-
curr_ansi_text = ""
|
122 |
-
for ansi_line in iter(process.stdout.readline, ""):
|
123 |
-
if process.returncode is not None and process.returncode != 0:
|
124 |
-
break
|
125 |
-
|
126 |
-
# stream process output to stdout
|
127 |
-
print(ansi_line, end="")
|
128 |
-
# skip torch.distributed.nn.jit.instantiator messages
|
129 |
-
if "torch.distributed.nn.jit.instantiator" in ansi_line:
|
130 |
-
continue
|
131 |
-
# process download messages
|
132 |
-
if "Downloading " in curr_ansi_text and "Downloading " in ansi_line:
|
133 |
-
curr_ansi_text = curr_ansi_text.split("\n")[:-2]
|
134 |
-
print(curr_ansi_text)
|
135 |
-
curr_ansi_text.append(ansi_line)
|
136 |
-
curr_ansi_text = "\n".join(curr_ansi_text)
|
137 |
-
else:
|
138 |
-
# append line to ansi text
|
139 |
-
curr_ansi_text += ansi_line
|
140 |
-
# convert ansi to html
|
141 |
-
curr_html_text = ansi2html_converter.convert(curr_ansi_text)
|
142 |
-
# stream html output to gradio
|
143 |
-
cumul_html_text = html_text + "<br><h3>Streaming logs:</h3>" + curr_html_text
|
144 |
-
yield gr.update(value=cumul_html_text), gr.update(interactive=False), gr.update(visible=False)
|
145 |
-
|
146 |
-
return process.returncode, cumul_html_text
|
147 |
-
|
148 |
-
|
149 |
-
def postprocess_table(table, experiment_name):
|
150 |
-
table["experiment_name"] = ["baseline", experiment_name]
|
151 |
-
table = table.set_index("experiment_name")
|
152 |
-
table.reset_index(inplace=True)
|
153 |
-
if "forward.latency(s)" in table.columns:
|
154 |
-
table["forward.latency.reduction(%)"] = (
|
155 |
-
table["forward.latency(s)"] / table["forward.latency(s)"].iloc[0] - 1
|
156 |
-
) * 100
|
157 |
-
table["forward.latency.reduction(%)"] = table["forward.latency.reduction(%)"].round(2)
|
158 |
-
|
159 |
-
if "forward.throughput(samples/s)" in table.columns:
|
160 |
-
table["forward.throughput.speedup(%)"] = (
|
161 |
-
table["forward.throughput(samples/s)"] / table["forward.throughput(samples/s)"].iloc[0] - 1
|
162 |
-
) * 100
|
163 |
-
table["forward.throughput.speedup(%)"] = table["forward.throughput.speedup(%)"].round(2)
|
164 |
-
|
165 |
-
if "forward.peak_memory(MB)" in table.columns:
|
166 |
-
table["forward.peak_memory.reduction(%)"] = (
|
167 |
-
table["forward.peak_memory(MB)"] / table["forward.peak_memory(MB)"].iloc[0] - 1
|
168 |
-
) * 100
|
169 |
-
table["forward.peak_memory.reduction(%)"] = table["forward.peak_memory.reduction(%)"].round(2)
|
170 |
-
|
171 |
-
if "generate.latency(s)" in table.columns:
|
172 |
-
table["generate.latency.reduction(%)"] = (
|
173 |
-
table["generate.latency(s)"] / table["generate.latency(s)"].iloc[0] - 1
|
174 |
-
) * 100
|
175 |
-
table["generate.latency.reduction(%)"] = table["generate.latency.reduction(%)"].round(2)
|
176 |
-
|
177 |
-
if "generate.throughput(tokens/s)" in table.columns:
|
178 |
-
table["generate.throughput.speedup(%)"] = (
|
179 |
-
table["generate.throughput(tokens/s)"] / table["generate.throughput(tokens/s)"].iloc[0] - 1
|
180 |
-
) * 100
|
181 |
-
table["generate.throughput.speedup(%)"] = table["generate.throughput.speedup(%)"].round(2)
|
182 |
-
|
183 |
-
if "generate.peak_memory(MB)" in table.columns:
|
184 |
-
table["generate.peak_memory.reduction(%)"] = (
|
185 |
-
table["generate.peak_memory(MB)"] / table["generate.peak_memory(MB)"].iloc[0] - 1
|
186 |
-
) * 100
|
187 |
-
table["generate.peak_memory.reduction(%)"] = table["generate.peak_memory.reduction(%)"].round(2)
|
188 |
-
|
189 |
-
return table
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|