Spaces:
Running
Running
import gradio as gr | |
from src.llm_perf import get_llm_perf_df | |
from src.leaderboard import get_leaderboard_df | |
from src.latency_score_memory import get_lat_score_mem_fig | |
from src.bettertransformer import get_bt_prefill_fig, get_bt_decode_fig | |
from src.flashattentionv2 import get_fa2_prefill_fig, get_fa2_decode_fig | |
from src.quantization_kernels import get_quant_prefill_fig, get_quant_decode_fig | |
def create_control_panel(machine: str = "hf-dgx-01"): | |
# controls | |
machine_textbox = gr.Textbox(value=machine, visible=False) | |
with gr.Accordion("Control Panel ποΈ", open=False, elem_id="control-panel"): | |
with gr.Row(): | |
with gr.Column(scale=1, variant="panel"): | |
score_slider = gr.Slider( | |
label="Open LLM Score (%) π", | |
info="ποΈ Slide to minimum Open LLM score", | |
value=0, | |
elem_id="threshold-slider", | |
) | |
with gr.Column(scale=1, variant="panel"): | |
memory_slider = gr.Slider( | |
label="Peak Memory (MB) π", | |
info="ποΈ Slide to maximum Peak Memory", | |
minimum=0, | |
maximum=80 * 1024, | |
value=80 * 1024, | |
elem_id="memory-slider", | |
) | |
with gr.Column(scale=1): | |
backend_checkboxes = gr.CheckboxGroup( | |
label="Backends π", | |
choices=["pytorch"], | |
value=["pytorch"], | |
info="βοΈ Select the backends", | |
elem_id="backend-checkboxes", | |
) | |
with gr.Row(): | |
with gr.Column(scale=1, variant="panel"): | |
datatype_checkboxes = gr.CheckboxGroup( | |
label="Load DTypes π₯", | |
choices=["float32", "float16", "bfloat16"], | |
value=["float32", "float16", "bfloat16"], | |
info="βοΈ Select the load data types", | |
elem_id="dtype-checkboxes", | |
) | |
with gr.Column(scale=1, variant="panel"): | |
optimization_checkboxes = gr.CheckboxGroup( | |
label="Optimizations π οΈ", | |
choices=["None", "BetterTransformer", "FlashAttentionV2"], | |
value=["None", "BetterTransformer", "FlashAttentionV2"], | |
info="βοΈ Select the optimization", | |
elem_id="optimization-checkboxes", | |
) | |
with gr.Column(scale=2): | |
quantization_checkboxes = gr.CheckboxGroup( | |
label="Quantizations ποΈ", | |
choices=[ | |
"None", | |
"BnB.4bit", | |
"BnB.8bit", | |
"GPTQ.4bit", | |
"GPTQ.4bit+ExllamaV1", | |
"GPTQ.4bit+ExllamaV2", | |
"AWQ.4bit+GEMM", | |
"AWQ.4bit+GEMV", | |
], | |
value=[ | |
"None", | |
"BnB.4bit", | |
"BnB.8bit", | |
"GPTQ.4bit", | |
"GPTQ.4bit+ExllamaV1", | |
"GPTQ.4bit+ExllamaV2", | |
"AWQ.4bit+GEMM", | |
"AWQ.4bit+GEMV", | |
], | |
info="βοΈ Select the quantization schemes", | |
elem_id="quantization-checkboxes", | |
elem_classes="boxed-option", | |
) | |
with gr.Row(): | |
filter_button = gr.Button( | |
value="Filter π", | |
elem_id="filter-button", | |
elem_classes="boxed-option", | |
) | |
return ( | |
filter_button, | |
machine_textbox, | |
score_slider, | |
memory_slider, | |
backend_checkboxes, | |
datatype_checkboxes, | |
optimization_checkboxes, | |
quantization_checkboxes, | |
) | |
def filter_fn( | |
machine, | |
# inputs | |
score, | |
memory, | |
backends, | |
datatypes, | |
optimizations, | |
quantizations, | |
# interactive | |
columns, | |
search, | |
): | |
raw_df = get_llm_perf_df(machine=machine) | |
filtered_df = raw_df[ | |
# raw_df["Model π€"].str.contains(model, case=False) | |
raw_df["Backend π"].isin(backends) | |
& raw_df["DType π₯"].isin(datatypes) | |
& raw_df["Optimization π οΈ"].isin(optimizations) | |
& raw_df["Quantization ποΈ"].isin(quantizations) | |
& (raw_df["Open LLM Score (%)"] >= score) | |
& (raw_df["Allocated Memory (MB)"] <= memory) | |
] | |
filtered_leaderboard_df = select_fn(machine, columns, search) | |
filtered_lat_score_mem_fig = get_lat_score_mem_fig(filtered_df) | |
filtered_bt_prefill_fig = get_bt_prefill_fig(filtered_df) | |
filtered_bt_decode_fig = get_bt_decode_fig(filtered_df) | |
filtered_fa2_prefill_fig = get_fa2_prefill_fig(filtered_df) | |
filtered_fa2_decode_fig = get_fa2_decode_fig(filtered_df) | |
filtered_quant_prefill_fig = get_quant_prefill_fig(filtered_df) | |
filtered_quant_decode_fig = get_quant_decode_fig(filtered_df) | |
return [ | |
filtered_leaderboard_df, | |
filtered_lat_score_mem_fig, | |
filtered_bt_prefill_fig, | |
filtered_bt_decode_fig, | |
filtered_fa2_prefill_fig, | |
filtered_fa2_decode_fig, | |
filtered_quant_prefill_fig, | |
filtered_quant_decode_fig, | |
] | |
def create_control_callback( | |
# button | |
filter_button, | |
# fixed | |
machine_textbox, | |
# inputs | |
score_slider, | |
memory_slider, | |
backend_checkboxes, | |
datatype_checkboxes, | |
optimization_checkboxes, | |
quantization_checkboxes, | |
# interactive | |
columns_checkboxes, | |
search_bar, | |
# outputs | |
leaderboard_table, | |
lat_score_mem_plot, | |
bt_prefill_plot, | |
bt_decode_plot, | |
fa2_prefill_plot, | |
fa2_decode_plot, | |
quant_prefill_plot, | |
quant_decode_plot, | |
): | |
filter_button.click( | |
fn=filter_fn, | |
inputs=[ | |
# fixed | |
machine_textbox, | |
# inputs | |
score_slider, | |
memory_slider, | |
backend_checkboxes, | |
datatype_checkboxes, | |
optimization_checkboxes, | |
quantization_checkboxes, | |
# interactive | |
columns_checkboxes, | |
search_bar, | |
], | |
outputs=[ | |
leaderboard_table, | |
lat_score_mem_plot, | |
bt_prefill_plot, | |
bt_decode_plot, | |
fa2_prefill_plot, | |
fa2_decode_plot, | |
quant_prefill_plot, | |
quant_decode_plot, | |
], | |
) | |
def select_fn(machine, columns, search): | |
raw_df = get_llm_perf_df(machine=machine) | |
selected_leaderboard_df = get_leaderboard_df(raw_df) | |
selected_leaderboard_df = selected_leaderboard_df[ | |
selected_leaderboard_df["Model π€"].str.contains(search, case=False) | |
] | |
selected_leaderboard_df = selected_leaderboard_df[columns] | |
return selected_leaderboard_df | |
def create_select_callback( | |
# fixed | |
machine_textbox, | |
# interactive | |
columns_checkboxes, | |
search_bar, | |
# outputs | |
leaderboard_table, | |
): | |
columns_checkboxes.change( | |
fn=select_fn, | |
inputs=[machine_textbox, columns_checkboxes, search_bar], | |
outputs=[leaderboard_table], | |
) | |
search_bar.change( | |
fn=select_fn, | |
inputs=[machine_textbox, columns_checkboxes, search_bar], | |
outputs=[leaderboard_table], | |
) | |