Spaces:
Running
Running
import os | |
import gradio as gr | |
import pandas as pd | |
import plotly.express as px | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from src.assets.css_html_js import custom_css, custom_js | |
from src.assets.text_content import ( | |
TITLE, | |
INTRODUCTION_TEXT, | |
ABOUT_TEXT, | |
EXAMPLE_CONFIG_TEXT, | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
) | |
from src.utils import ( | |
change_tab, | |
restart_space, | |
load_dataset_repo, | |
process_model_name, | |
process_model_type, | |
) | |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard" | |
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset" | |
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None) | |
TRUE_WEIGHT_CLASSES = { | |
"6B": "7B", | |
} | |
ALL_COLUMNS_MAPPING = { | |
"model_type": "Type π€", | |
"weight_class": "Class ποΈ", | |
# | |
"backend.name": "Backend π", | |
"backend.torch_dtype": "Dtype π₯", | |
"optimizations": "Optimizations π οΈ", | |
# | |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ", | |
# "forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ", | |
# | |
"best_scored_model": "Best Scored Model π", | |
"best_score": "Best Score (%) β¬οΈ", | |
} | |
ALL_COLUMNS_DATATYPES = [ | |
"str", | |
"str", | |
# | |
"str", | |
"str", | |
"str", | |
# | |
"number", | |
"number", | |
# | |
"markdown", | |
"number", | |
] | |
SORTING_COLUMN = ["tradeoff"] | |
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN) | |
def get_benchmark_df(benchmark="1xA100-80GB"): | |
if llm_perf_dataset_repo: | |
llm_perf_dataset_repo.git_pull() | |
# load and merge | |
bench_df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}.csv") | |
scores_df = pd.read_csv( | |
"./llm-perf-dataset/reports/Weighted+Classed-Open-LLM-Leaderboard.csv" | |
) | |
bench_df["merge_id"] = bench_df.experiment_name.str.split("_1_1000_").str[-1] | |
scores_df["merge_id"] = scores_df.weight_class + "_" + scores_df.model_type | |
merged_df = bench_df.merge(scores_df, on="merge_id") | |
# fix some weight classes | |
merged_df["weight_class"] = merged_df["weight_class"].apply( | |
lambda x: TRUE_WEIGHT_CLASSES[x] if x in TRUE_WEIGHT_CLASSES else x | |
) | |
# convert peak memory to int | |
# merged_df["forward.peak_memory(MB)"] = merged_df["forward.peak_memory(MB)"].apply( | |
# lambda x: int(x) | |
# ) | |
# add optimizations | |
merged_df["optimizations"] = merged_df[ | |
["backend.bettertransformer", "backend.load_in_8bit", "backend.load_in_4bit"] | |
].apply( | |
lambda x: ", ".join( | |
filter( | |
lambda x: x != "", | |
[ | |
"BetterTransformer" if x[0] == True else "", | |
"LLM.int8" if x[1] == True else "", | |
"LLM.fp4" if x[2] == True else "", | |
], | |
), | |
) | |
if any([x[0] == True, x[1] == True, x[2] == True]) | |
else "None", | |
axis=1, | |
) | |
merged_df["quantized"] = merged_df["optimizations"].str.contains("LLM.int8|LLM.fp4") | |
# create composite score | |
score_distance = 100 - merged_df["best_score"] | |
# normalize latency between 0 and 100 | |
latency_distance = merged_df["generate.latency(s)"] | |
merged_df["tradeoff"] = (score_distance**2 + latency_distance**2) ** 0.5 | |
merged_df["tradeoff"] = merged_df["tradeoff"].round(2) | |
return merged_df | |
def get_benchmark_table(bench_df): | |
# add * to quantized models score | |
copy_df = bench_df.copy() | |
copy_df["best_score"] = copy_df.apply( | |
lambda x: f"{x['best_score']}**" if x["quantized"] else x["best_score"], | |
axis=1, | |
) | |
# sort | |
copy_df.sort_values(by=SORTING_COLUMN, ascending=True, inplace=True) | |
# filter | |
copy_df = copy_df[list(ALL_COLUMNS_MAPPING.keys())] | |
# rename | |
copy_df.rename(columns=ALL_COLUMNS_MAPPING, inplace=True) | |
# transform | |
copy_df["Type π€"] = copy_df["Type π€"].apply(process_model_type) | |
copy_df["Best Scored Model π"] = copy_df["Best Scored Model π"].apply( | |
process_model_name | |
) | |
return copy_df | |
def get_benchmark_plot(bench_df): | |
fig = px.scatter( | |
bench_df, | |
x="generate.latency(s)", | |
y="best_score", | |
color="model_type", | |
# size="forward.peak_memory(MB)", | |
custom_data=[ | |
"best_scored_model", | |
"backend.name", | |
"backend.torch_dtype", | |
"optimizations", | |
# "forward.peak_memory(MB)", | |
"generate.throughput(tokens/s)", | |
], | |
color_discrete_sequence=px.colors.qualitative.Light24, | |
) | |
fig.update_layout( | |
title={ | |
"text": "Model Score vs. Latency", | |
"y": 0.95, | |
"x": 0.5, | |
"xanchor": "center", | |
"yanchor": "top", | |
}, | |
xaxis_title="Per 1000 Tokens Latency (s)", | |
yaxis_title="Open LLM Score (%)", | |
legend_title="Model Type", | |
width=1200, | |
height=600, | |
) | |
fig.update_traces( | |
hovertemplate="<br>".join( | |
[ | |
"Model: %{customdata[0]}", | |
"Backend: %{customdata[1]}", | |
"Load Datatype: %{customdata[2]}", | |
"Optimizations: %{customdata[3]}", | |
# "Peak Memory (MB): %{customdata[4]}", | |
"Throughput (tokens/s): %{customdata[4]}", | |
"Per 1000 Tokens Latency (s): %{x}", | |
"Open LLM Score (%): %{y}", | |
] | |
) | |
) | |
return fig | |
def filter_query( | |
text, | |
backends, | |
datatypes, | |
optimizations, | |
score, | |
# memory, | |
benchmark="1xA100-80GB", | |
): | |
raw_df = get_benchmark_df(benchmark=benchmark) | |
filtered_df = raw_df[ | |
raw_df["best_scored_model"].str.lower().str.contains(text.lower()) | |
& raw_df["backend.name"].isin(backends) | |
& raw_df["backend.torch_dtype"].isin(datatypes) | |
& ( | |
pd.concat( | |
[ | |
raw_df["optimizations"].str.contains(optimization) | |
for optimization in optimizations | |
], | |
axis=1, | |
).any(axis="columns") | |
if len(optimizations) > 0 | |
else True | |
) | |
& (raw_df["best_score"] >= score) | |
# & (raw_df["forward.peak_memory(MB)"] <= memory) | |
] | |
filtered_table = get_benchmark_table(filtered_df) | |
filtered_plot = get_benchmark_plot(filtered_df) | |
return filtered_table, filtered_plot | |
# Dataframes | |
A100_df = get_benchmark_df(benchmark="1xA100-80GB") | |
A100_table = get_benchmark_table(A100_df) | |
A100_plot = get_benchmark_plot(A100_df) | |
# Demo interface | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
# leaderboard title | |
gr.HTML(TITLE) | |
# introduction text | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="descriptive-text") | |
# leaderboard tabs | |
with gr.Tabs(elem_classes="A100-tabs") as A100_tabs: | |
with gr.TabItem("π₯οΈ A100-80GB Benchmark π", id=0): | |
gr.HTML( | |
"π Scroll to the right π for more columns.", elem_id="descriptive-text" | |
) | |
# Original leaderboard table | |
A100_leaderboard = gr.components.Dataframe( | |
value=A100_table, | |
datatype=ALL_COLUMNS_DATATYPES, | |
headers=list(ALL_COLUMNS_MAPPING.values()), | |
elem_id="1xA100-table", | |
) | |
with gr.TabItem("π₯οΈ A100-80GB Plot π", id=1): | |
gr.HTML( | |
"π Hover over the points π for additional information.", | |
elem_id="descriptive-text", | |
) | |
# Original leaderboard plot | |
A100_plotly = gr.components.Plot( | |
value=A100_plot, | |
elem_id="1xA100-plot", | |
show_label=False, | |
) | |
with gr.TabItem("Control Panel ποΈ", id=2): | |
gr.HTML( | |
"Use this control panel to filter the leaderboard's table and plot.", | |
elem_id="descriptive-text", | |
) | |
# control panel interface | |
with gr.Row(): | |
with gr.Column(scale=1): | |
search_bar = gr.Textbox( | |
label="Model π€", | |
info="π Search for a model name", | |
elem_id="search-bar", | |
) | |
with gr.Column(scale=1): | |
with gr.Box(): | |
score_slider = gr.Slider( | |
label="Open LLM Score π", | |
info="ποΈ Slide to minimum Open LLM score", | |
value=0, | |
elem_id="threshold-slider", | |
) | |
# with gr.Column(scale=1): | |
# with gr.Box(): | |
# memory_slider = gr.Slider( | |
# label="Peak Memory (MB) π", | |
# info="ποΈ Slide to maximum Peak Memory", | |
# minimum=0, | |
# maximum=80 * 1024, | |
# value=80 * 1024, | |
# elem_id="memory-slider", | |
# ) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
backend_checkboxes = gr.CheckboxGroup( | |
label="Backends π", | |
choices=["pytorch", "onnxruntime"], | |
value=["pytorch", "onnxruntime"], | |
info="βοΈ Select the backends", | |
elem_id="backend-checkboxes", | |
) | |
with gr.Column(scale=1): | |
datatype_checkboxes = gr.CheckboxGroup( | |
label="Dtypes π₯", | |
choices=["float32", "float16"], | |
value=["float32", "float16"], | |
info="βοΈ Select the load dtypes", | |
elem_id="dtype-checkboxes", | |
) | |
with gr.Column(scale=2): | |
optimizations_checkboxes = gr.CheckboxGroup( | |
label="Optimizations π οΈ", | |
choices=["None", "BetterTransformer", "LLM.int8", "LLM.fp4"], | |
value=["None", "BetterTransformer", "LLM.int8", "LLM.fp4"], | |
info="βοΈ Select the optimizations", | |
elem_id="optimizations-checkboxes", | |
) | |
with gr.Row(): | |
filter_button = gr.Button( | |
value="Filter π", | |
elem_id="filter-button", | |
) | |
with gr.TabItem("About π", id=3): | |
gr.HTML(ABOUT_TEXT, elem_classes="descriptive-text") | |
gr.Markdown(EXAMPLE_CONFIG_TEXT, elem_classes="descriptive-text") | |
demo.load( | |
change_tab, | |
A100_tabs, | |
_js=custom_js, | |
) | |
filter_button.click( | |
filter_query, | |
[ | |
search_bar, | |
backend_checkboxes, | |
datatype_checkboxes, | |
optimizations_checkboxes, | |
score_slider, | |
# memory_slider, | |
], | |
[A100_leaderboard, A100_plotly], | |
) | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id="citation-button", | |
).style(show_copy_button=True) | |
# Restart space every hour | |
scheduler = BackgroundScheduler() | |
scheduler.add_job( | |
restart_space, | |
"interval", | |
seconds=3600, | |
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN], | |
) | |
scheduler.start() | |
# Launch demo | |
demo.queue(concurrency_count=40).launch() | |