BenchmarkBot's picture
fix
fda0b51
raw
history blame
10.6 kB
import os
import gradio as gr
import pandas as pd
import plotly.express as px
from apscheduler.schedulers.background import BackgroundScheduler
from src.assets.css_html_js import custom_css, custom_js
from src.assets.text_content import (
TITLE,
INTRODUCTION_TEXT,
ABOUT_TEXT,
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
)
from src.utils import (
change_tab,
restart_space,
load_dataset_repo,
process_model_name,
process_model_type,
process_weight_class,
)
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
ALL_COLUMNS_MAPPING = {
"best_scored_model": "Best Scored Model ๐Ÿ†",
"model_type": "Type ๐Ÿค—",
"weight_class": "Class ๐Ÿ‹๏ธ",
#
"backend.name": "Backend ๐Ÿญ",
"backend.torch_dtype": "Dtype ๐Ÿ“ฅ",
"optimizations": "Optimizations ๐Ÿ› ๏ธ",
#
"generate.throughput(tokens/s)": "Throughput (tokens/s) โฌ†๏ธ",
"forward.peak_memory(MB)": "Peak Memory (MB) โฌ‡๏ธ",
"best_score": "Score (%) โฌ†๏ธ",
#
}
ALL_COLUMNS_DATATYPES = [
"markdown",
"str",
"str",
#
"str",
"str",
"str",
#
"number",
"number",
"number",
]
SORTING_COLUMN = ["tradeoff"]
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
def get_benchmark_df(benchmark="1xA100-80GB"):
if llm_perf_dataset_repo:
llm_perf_dataset_repo.git_pull()
# load and merge
bench_df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}.csv")
scores_df = pd.read_csv(
f"./llm-perf-dataset/reports/Grouped-Open-LLM-Leaderboard.csv"
)
merged_df = bench_df.merge(scores_df, left_on="model", right_on="best_scored_model")
# add optimizations
merged_df["optimizations"] = merged_df[
["backend.bettertransformer", "backend.load_in_8bit", "backend.load_in_4bit"]
].apply(
lambda x: ", ".join(
filter(
lambda x: x != "",
[
"BetterTransformer" if x[0] == True else "",
"LLM.int8" if x[1] == True else "",
"LLM.fp4" if x[2] == True else "",
],
),
)
if any([x[0] == True, x[1] == True, x[2] == True])
else "None",
axis=1,
)
# create composite score
score_distance = 100 - merged_df["best_score"]
# normalize latency between 0 and 100
latency_distance = merged_df["generate.latency(s)"]
merged_df["tradeoff"] = (score_distance**2 + latency_distance**2) ** 0.5
merged_df["tradeoff"] = merged_df["tradeoff"].round(2)
return merged_df
def get_benchmark_table(bench_df):
# sort
bench_df.sort_values(by=SORTING_COLUMN, ascending=True, inplace=True)
# filter
bench_df = bench_df[list(ALL_COLUMNS_MAPPING.keys())]
# rename
bench_df.rename(columns=ALL_COLUMNS_MAPPING, inplace=True)
# transform
bench_df["Type ๐Ÿค—"] = bench_df["Type ๐Ÿค—"].apply(process_model_type)
bench_df["Class ๐Ÿ‹๏ธ"] = bench_df["Class ๐Ÿ‹๏ธ"].apply(process_weight_class)
bench_df["Best Scored Model ๐Ÿ†"] = bench_df["Best Scored Model ๐Ÿ†"].apply(
process_model_name
)
return bench_df
def get_benchmark_plot(bench_df):
# untill falcon gets fixed / natively supported
bench_df = bench_df[bench_df["generate.latency(s)"] < 150]
fig = px.scatter(
bench_df,
x="generate.latency(s)",
y="best_score",
color="model_type",
size="forward.peak_memory(MB)",
custom_data=[
"best_scored_model",
"backend.name",
"backend.torch_dtype",
"optimizations",
"forward.peak_memory(MB)",
"generate.throughput(tokens/s)",
],
color_discrete_sequence=px.colors.qualitative.Light24,
)
fig.update_layout(
title={
"text": "Model Score vs. Latency vs. Memory",
"y": 0.95,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
},
xaxis_title="Per 1000 Tokens Latency (s)",
yaxis_title="Open LLM Score (%)",
legend_title="Model Type",
width=1200,
height=600,
)
fig.update_traces(
hovertemplate="<br>".join(
[
"Model: %{customdata[0]}",
"Backend: %{customdata[1]}",
"Load Datatype: %{customdata[2]}",
"Optimizations: %{customdata[3]}",
"Peak Memory (MB): %{customdata[4]}",
"Throughput (tokens/s): %{customdata[5]}",
"Per 1000 Tokens Latency (s): %{x}",
"Open LLM Score (%): %{y}",
]
)
)
return fig
def filter_query(
text,
backends,
datatypes,
optimizations,
score,
memory,
benchmark="1xA100-80GB",
):
raw_df = get_benchmark_df(benchmark=benchmark)
filtered_df = raw_df[
raw_df["best_scored_model"].str.lower().str.contains(text.lower())
& raw_df["backend.name"].isin(backends)
& raw_df["backend.torch_dtype"].isin(datatypes)
& (
pd.concat(
[
raw_df["optimizations"].str.contains(optimization)
for optimization in optimizations
],
axis=1,
).any(axis="columns")
if len(optimizations) > 0
else True
)
& (raw_df["best_score"] >= score)
& (raw_df["forward.peak_memory(MB)"] <= memory)
]
filtered_table = get_benchmark_table(filtered_df)
filtered_plot = get_benchmark_plot(filtered_df)
return filtered_table, filtered_plot
# Dataframes
A100_df = get_benchmark_df(benchmark="1xA100-80GB")
A100_table = get_benchmark_table(A100_df)
A100_plot = get_benchmark_plot(A100_df)
# Demo interface
demo = gr.Blocks(css=custom_css)
with demo:
# leaderboard title
gr.HTML(TITLE)
# introduction text
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# leaderboard tabs
with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
with gr.TabItem("๐Ÿ–ฅ๏ธ A100-80GB Leaderboar Table ๐Ÿ†", id=0):
# Original leaderboard table
A100_leaderboard = gr.components.Dataframe(
value=A100_table,
datatype=ALL_COLUMNS_DATATYPES,
headers=list(ALL_COLUMNS_MAPPING.values()),
elem_id="1xA100-table",
)
with gr.TabItem("๐Ÿ–ฅ๏ธ A100-80GB Interactive Plot ๐Ÿ“Š", id=2):
# Original leaderboard plot
A100_plotly = gr.components.Plot(
value=A100_plot,
elem_id="1xA100-plot",
show_label=False,
)
with gr.TabItem("๐ŸŽฎ Control Panel ๐ŸŽ›๏ธ", id=3):
# control panel interface
with gr.Row():
with gr.Column(scale=1):
search_bar = gr.Textbox(
label="Model ๐Ÿค—",
info="๐Ÿ” Search for a model name",
elem_id="search-bar",
)
with gr.Column(scale=1):
with gr.Box():
score_slider = gr.Slider(
label="Open LLM Score ๐Ÿ“ˆ",
info="๐ŸŽš๏ธ Slide to minimum Open LLM score",
value=0,
elem_id="threshold-slider",
)
with gr.Column(scale=1):
with gr.Box():
memory_slider = gr.Slider(
label="Peak Memory (MB) ๐Ÿ“ˆ",
info="๐ŸŽš๏ธ Slide to maximum Peak Memory",
minimum=0,
maximum=80 * 1024,
value=80 * 1024,
elem_id="memory-slider",
)
with gr.Row():
with gr.Column(scale=1):
backend_checkboxes = gr.CheckboxGroup(
label="Backends ๐Ÿญ",
choices=["pytorch", "onnxruntime"],
value=["pytorch", "onnxruntime"],
info="โ˜‘๏ธ Select the backends",
elem_id="backend-checkboxes",
)
with gr.Column(scale=1):
datatype_checkboxes = gr.CheckboxGroup(
label="Dtypes ๐Ÿ“ฅ",
choices=["float32", "float16"],
value=["float32", "float16"],
info="โ˜‘๏ธ Select the load dtypes",
elem_id="dtype-checkboxes",
)
with gr.Column(scale=2):
optimizations_checkboxes = gr.CheckboxGroup(
label="Optimizations ๐Ÿ› ๏ธ",
choices=["None", "BetterTransformer", "LLM.int8", "LLM.fp4"],
value=["None", "BetterTransformer", "LLM.int8", "LLM.fp4"],
info="โ˜‘๏ธ Select the optimizations",
elem_id="optimizations-checkboxes",
)
with gr.Row():
filter_button = gr.Button(
value="Filter ๐Ÿš€",
elem_id="filter-button",
)
with gr.TabItem("๐Ÿ“– About โ”", id=4):
gr.HTML(ABOUT_TEXT, elem_classes="html-text")
demo.load(
change_tab,
A100_tabs,
_js=custom_js,
)
filter_button.click(
filter_query,
[
search_bar,
backend_checkboxes,
datatype_checkboxes,
optimizations_checkboxes,
score_slider,
memory_slider,
],
[A100_leaderboard, A100_plotly],
)
with gr.Row():
with gr.Accordion("๐Ÿ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
# Restart space every hour
scheduler = BackgroundScheduler()
scheduler.add_job(
restart_space,
"interval",
seconds=3600,
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN],
)
scheduler.start()
# Launch demo
demo.queue(concurrency_count=40).launch()