Spaces:
Running
Running
BenchmarkBot
commited on
Commit
Β·
708b21b
1
Parent(s):
e2c5bda
bug fix
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ from src.utils import restart_space, load_dataset_repo, make_clickable_model
|
|
10 |
|
11 |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
|
12 |
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
|
13 |
-
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN")
|
14 |
|
15 |
COLUMNS_MAPPING = {
|
16 |
"model": "Model π€",
|
@@ -36,7 +36,7 @@ def get_benchmark_df(benchmark):
|
|
36 |
# preprocess
|
37 |
df["model"] = df["model"].apply(make_clickable_model)
|
38 |
# filter
|
39 |
-
df = df[COLUMNS_MAPPING.keys()]
|
40 |
# rename
|
41 |
df.rename(columns=COLUMNS_MAPPING, inplace=True)
|
42 |
# sort
|
@@ -52,41 +52,39 @@ with demo:
|
|
52 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
53 |
|
54 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
55 |
-
with gr.
|
56 |
-
|
57 |
-
|
58 |
-
SINGLE_A100_TEXT = """<h3>Single-GPU (1xA100):</h3>
|
59 |
-
<ul>
|
60 |
-
<li>Singleton Batch (1)</li>
|
61 |
-
<li>Thousand Tokens (1000)</li>
|
62 |
-
</ul>
|
63 |
-
"""
|
64 |
-
gr.HTML(SINGLE_A100_TEXT)
|
65 |
-
|
66 |
-
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
|
67 |
-
leaderboard_table_lite = gr.components.Dataframe(
|
68 |
-
value=single_A100_df,
|
69 |
-
datatype=COLUMNS_DATATYPES,
|
70 |
-
headers=COLUMNS_MAPPING.values(),
|
71 |
-
elem_id="1xA100-table",
|
72 |
-
)
|
73 |
-
|
74 |
-
with gr.Row():
|
75 |
-
MULTI_A100_TEXT = """<h3>Multi-GPU (4xA100):</h3>
|
76 |
<ul>
|
77 |
<li>Singleton Batch (1)</li>
|
78 |
<li>Thousand Tokens (1000)</li>
|
79 |
-
</ul>
|
80 |
-
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
value=
|
85 |
datatype=COLUMNS_DATATYPES,
|
86 |
-
headers=COLUMNS_MAPPING.values(),
|
87 |
-
elem_id="
|
88 |
)
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
with gr.Row():
|
91 |
with gr.Accordion("π Citation", open=False):
|
92 |
citation_button = gr.Textbox(
|
|
|
10 |
|
11 |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
|
12 |
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
|
13 |
+
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
|
14 |
|
15 |
COLUMNS_MAPPING = {
|
16 |
"model": "Model π€",
|
|
|
36 |
# preprocess
|
37 |
df["model"] = df["model"].apply(make_clickable_model)
|
38 |
# filter
|
39 |
+
df = df[list(COLUMNS_MAPPING.keys())]
|
40 |
# rename
|
41 |
df.rename(columns=COLUMNS_MAPPING, inplace=True)
|
42 |
# sort
|
|
|
52 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
53 |
|
54 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
55 |
+
with gr.TabItem("π₯οΈ A100-80GB Benchmark ποΈ", elem_id="A100-benchmark", id=0):
|
56 |
+
|
57 |
+
SINGLE_A100_TEXT = """<h3>Single-GPU (1xA100):</h3>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
<ul>
|
59 |
<li>Singleton Batch (1)</li>
|
60 |
<li>Thousand Tokens (1000)</li>
|
61 |
+
</ul>
|
62 |
+
"""
|
63 |
+
gr.HTML(SINGLE_A100_TEXT)
|
64 |
|
65 |
+
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
|
66 |
+
leaderboard_table_lite = gr.components.Dataframe(
|
67 |
+
value=single_A100_df,
|
68 |
datatype=COLUMNS_DATATYPES,
|
69 |
+
headers=list(COLUMNS_MAPPING.values()),
|
70 |
+
elem_id="1xA100-table",
|
71 |
)
|
72 |
|
73 |
+
MULTI_A100_TEXT = """<h3>Multi-GPU (4xA100):</h3>
|
74 |
+
<ul>
|
75 |
+
<li>Singleton Batch (1)</li>
|
76 |
+
<li>Thousand Tokens (1000)</li>
|
77 |
+
</ul>"""
|
78 |
+
gr.HTML(MULTI_A100_TEXT)
|
79 |
+
|
80 |
+
multi_A100_df = get_benchmark_df(benchmark="4xA100-80GB")
|
81 |
+
leaderboard_table_full = gr.components.Dataframe(
|
82 |
+
value=multi_A100_df,
|
83 |
+
datatype=COLUMNS_DATATYPES,
|
84 |
+
headers=list(COLUMNS_MAPPING.values()),
|
85 |
+
elem_id="4xA100-table",
|
86 |
+
)
|
87 |
+
|
88 |
with gr.Row():
|
89 |
with gr.Accordion("π Citation", open=False):
|
90 |
citation_button = gr.Textbox(
|