Spaces:
Running
Running
BenchmarkBot
commited on
Commit
β’
996d4ed
1
Parent(s):
8ca4da7
define click event
Browse files- app.py +10 -28
- src/utils.py +16 -0
app.py
CHANGED
@@ -5,7 +5,7 @@ import pandas as pd
|
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
|
7 |
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, SINGLE_A100_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
|
8 |
-
from src.utils import restart_space, load_dataset_repo, make_clickable_model, make_clickable_score,
|
9 |
from src.assets.css_html_js import custom_css
|
10 |
|
11 |
|
@@ -187,7 +187,15 @@ with demo:
|
|
187 |
# elem_id="1xA100-plot",
|
188 |
# show_label=False,
|
189 |
# )
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
with gr.Row():
|
192 |
with gr.Accordion("π Citation", open=False):
|
193 |
citation_button = gr.Textbox(
|
@@ -197,32 +205,6 @@ with demo:
|
|
197 |
).style(show_copy_button=True)
|
198 |
|
199 |
|
200 |
-
def submit_query(text, backends, datatypes, threshold, raw_df):
|
201 |
-
raw_df["H4 Score β¬οΈ"] = raw_df["H4 Score β¬οΈ"].apply(
|
202 |
-
extract_score_from_clickable)
|
203 |
-
|
204 |
-
filtered_df = raw_df[
|
205 |
-
raw_df["Model π€"].str.lower().str.contains(text.lower()) &
|
206 |
-
raw_df["Backend π"].isin(backends) &
|
207 |
-
raw_df["Datatype π₯"].isin(datatypes) &
|
208 |
-
(raw_df["H4 Score β¬οΈ"] >= threshold)
|
209 |
-
]
|
210 |
-
|
211 |
-
filtered_df["H4 Score β¬οΈ"] = filtered_df["H4 Score β¬οΈ"].apply(
|
212 |
-
make_clickable_score)
|
213 |
-
return filtered_df
|
214 |
-
|
215 |
-
|
216 |
-
# Callbacks
|
217 |
-
submit_button.click(
|
218 |
-
submit_query,
|
219 |
-
[
|
220 |
-
search_bar, backend_checkboxes, datatype_checkboxes, threshold_slider,
|
221 |
-
single_A100_for_search
|
222 |
-
],
|
223 |
-
[single_A100_leaderboard]
|
224 |
-
)
|
225 |
-
|
226 |
# Restart space every hour
|
227 |
scheduler = BackgroundScheduler()
|
228 |
scheduler.add_job(restart_space, "interval", seconds=3600,
|
|
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
|
7 |
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, SINGLE_A100_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
|
8 |
+
from src.utils import restart_space, load_dataset_repo, make_clickable_model, make_clickable_score, submit_query
|
9 |
from src.assets.css_html_js import custom_css
|
10 |
|
11 |
|
|
|
187 |
# elem_id="1xA100-plot",
|
188 |
# show_label=False,
|
189 |
# )
|
190 |
+
# Callbacks
|
191 |
+
submit_button.click(
|
192 |
+
submit_query,
|
193 |
+
[
|
194 |
+
search_bar, backend_checkboxes, datatype_checkboxes, threshold_slider,
|
195 |
+
single_A100_for_search
|
196 |
+
],
|
197 |
+
[single_A100_leaderboard]
|
198 |
+
)
|
199 |
with gr.Row():
|
200 |
with gr.Accordion("π Citation", open=False):
|
201 |
citation_button = gr.Textbox(
|
|
|
205 |
).style(show_copy_button=True)
|
206 |
|
207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
# Restart space every hour
|
209 |
scheduler = BackgroundScheduler()
|
210 |
scheduler.add_job(restart_space, "interval", seconds=3600,
|
src/utils.py
CHANGED
@@ -70,3 +70,19 @@ def make_clickable_score(score):
|
|
70 |
|
71 |
def extract_score_from_clickable(clickable_score) -> float:
|
72 |
return float(re.findall(r"\d+\.\d+", clickable_score)[-1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
def extract_score_from_clickable(clickable_score) -> float:
|
72 |
return float(re.findall(r"\d+\.\d+", clickable_score)[-1])
|
73 |
+
|
74 |
+
|
75 |
+
def submit_query(text, backends, datatypes, threshold, raw_df):
|
76 |
+
raw_df["H4 Score β¬οΈ"] = raw_df["H4 Score β¬οΈ"].apply(
|
77 |
+
extract_score_from_clickable)
|
78 |
+
|
79 |
+
filtered_df = raw_df[
|
80 |
+
raw_df["Model π€"].str.lower().str.contains(text.lower()) &
|
81 |
+
raw_df["Backend π"].isin(backends) &
|
82 |
+
raw_df["Datatype π₯"].isin(datatypes) &
|
83 |
+
(raw_df["H4 Score β¬οΈ"] >= threshold)
|
84 |
+
]
|
85 |
+
|
86 |
+
filtered_df["H4 Score β¬οΈ"] = filtered_df["H4 Score β¬οΈ"].apply(
|
87 |
+
make_clickable_score)
|
88 |
+
return filtered_df
|