BenchmarkBot commited on
Commit
b084ebf
β€’
1 Parent(s): 8d79fd1

added * to quantized models scores

Browse files
Files changed (1) hide show
  1. app.py +10 -2
app.py CHANGED
@@ -27,6 +27,10 @@ LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
27
  OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
28
 
29
 
 
 
 
 
30
  ALL_COLUMNS_MAPPING = {
31
  "model_type": "Type πŸ€—",
32
  "weight_class": "Class πŸ‹οΈ",
@@ -100,10 +104,14 @@ def get_benchmark_df(benchmark="1xA100-80GB"):
100
  merged_df["tradeoff"] = (score_distance**2 + latency_distance**2) ** 0.5
101
  merged_df["tradeoff"] = merged_df["tradeoff"].round(2)
102
 
103
- # remove score for quantized models
104
  merged_df.loc[
105
  merged_df["optimizations"].str.contains("LLM.int8|LLM.fp4"), "best_score"
106
- ] = "Not Evaluated"
 
 
 
 
107
 
108
  return merged_df
109
 
 
27
  OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
28
 
29
 
30
+ TRUE_WEIGHT_CLASSES = {
31
+ "6B": "7B",
32
+ }
33
+
34
  ALL_COLUMNS_MAPPING = {
35
  "model_type": "Type πŸ€—",
36
  "weight_class": "Class πŸ‹οΈ",
 
104
  merged_df["tradeoff"] = (score_distance**2 + latency_distance**2) ** 0.5
105
  merged_df["tradeoff"] = merged_df["tradeoff"].round(2)
106
 
107
+ # add * to quantized models
108
  merged_df.loc[
109
  merged_df["optimizations"].str.contains("LLM.int8|LLM.fp4"), "best_score"
110
+ ] = merged_df.loc[
111
+ merged_df["optimizations"].str.contains("LLM.int8|LLM.fp4"), "best_score"
112
+ ].apply(
113
+ lambda x: f"{x}*"
114
+ )
115
 
116
  return merged_df
117