Spaces:
Running
Running
BenchmarkBot
commited on
Commit
Β·
b3a1bf0
1
Parent(s):
81f5492
filtering plot
Browse files- app.py +62 -49
- src/utils.py +0 -20
app.py
CHANGED
@@ -5,7 +5,7 @@ import plotly.express as px
|
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
|
7 |
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, SINGLE_A100_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
|
8 |
-
from src.utils import restart_space, load_dataset_repo, make_clickable_model, make_clickable_score
|
9 |
from src.assets.css_html_js import custom_css
|
10 |
|
11 |
|
@@ -16,10 +16,11 @@ OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
|
|
16 |
COLUMNS_MAPPING = {
|
17 |
"model": "Model π€",
|
18 |
"backend.name": "Backend π",
|
19 |
-
"backend.torch_dtype": "
|
20 |
"forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ",
|
21 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
|
22 |
-
"h4_score": "Average
|
|
|
23 |
}
|
24 |
COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number", "markdown"]
|
25 |
SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"]
|
@@ -28,7 +29,7 @@ SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"]
|
|
28 |
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
|
29 |
|
30 |
|
31 |
-
def get_benchmark_df(benchmark):
|
32 |
if llm_perf_dataset_repo:
|
33 |
llm_perf_dataset_repo.git_pull()
|
34 |
|
@@ -39,41 +40,38 @@ def get_benchmark_df(benchmark):
|
|
39 |
f"./llm-perf-dataset/reports/additional_data.csv")
|
40 |
bench_df = bench_df.merge(scores_df, on="model", how="left")
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
45 |
# filter
|
46 |
bench_df = bench_df[list(COLUMNS_MAPPING.keys())]
|
47 |
# rename
|
48 |
bench_df.rename(columns=COLUMNS_MAPPING, inplace=True)
|
49 |
# sort
|
50 |
bench_df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True)
|
|
|
|
|
|
|
|
|
51 |
|
52 |
return bench_df
|
53 |
|
54 |
|
55 |
-
|
56 |
-
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
|
57 |
-
|
58 |
-
|
59 |
-
def get_benchmark_plot(benchmark):
|
60 |
-
if llm_perf_dataset_repo:
|
61 |
-
llm_perf_dataset_repo.git_pull()
|
62 |
-
|
63 |
-
# load
|
64 |
-
bench_df = pd.read_csv(
|
65 |
-
f"./llm-perf-dataset/reports/{benchmark}.csv")
|
66 |
-
scores_df = pd.read_csv(
|
67 |
-
f"./llm-perf-dataset/reports/additional_data.csv")
|
68 |
-
bench_df = bench_df.merge(scores_df, on="model", how="left")
|
69 |
|
|
|
70 |
bench_df = bench_df[bench_df["generate.latency(s)"] < 100]
|
71 |
|
72 |
fig = px.scatter(
|
73 |
-
bench_df, x="
|
74 |
color='model_type', symbol='backend.name', size='forward.peak_memory(MB)',
|
75 |
custom_data=['model', 'backend.name', 'backend.torch_dtype',
|
76 |
'forward.peak_memory(MB)', 'generate.throughput(tokens/s)'],
|
|
|
|
|
|
|
77 |
)
|
78 |
|
79 |
fig.update_layout(
|
@@ -83,11 +81,18 @@ def get_benchmark_plot(benchmark):
|
|
83 |
'xanchor': 'center',
|
84 |
'yanchor': 'top'
|
85 |
},
|
86 |
-
xaxis_title="
|
87 |
-
yaxis_title="
|
88 |
-
legend_title="Model Type
|
89 |
-
width=
|
90 |
height=600,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
)
|
92 |
|
93 |
fig.update_traces(
|
@@ -97,16 +102,35 @@ def get_benchmark_plot(benchmark):
|
|
97 |
"Datatype: %{customdata[2]}",
|
98 |
"Peak Memory (MB): %{customdata[3]}",
|
99 |
"Throughput (tokens/s): %{customdata[4]}",
|
100 |
-
"
|
101 |
-
"Average
|
102 |
])
|
103 |
)
|
104 |
|
105 |
return fig
|
106 |
|
107 |
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
# Demo interface
|
112 |
demo = gr.Blocks(css=custom_css)
|
@@ -142,7 +166,7 @@ with demo:
|
|
142 |
elem_id="datatype-checkboxes",
|
143 |
)
|
144 |
threshold_slider = gr.Slider(
|
145 |
-
label="Average
|
146 |
info="lter by minimum average H4 score",
|
147 |
value=0.0,
|
148 |
elem_id="threshold-slider",
|
@@ -161,28 +185,11 @@ with demo:
|
|
161 |
|
162 |
# Original leaderboard table
|
163 |
single_A100_leaderboard = gr.components.Dataframe(
|
164 |
-
value=
|
165 |
datatype=COLUMNS_DATATYPES,
|
166 |
headers=list(COLUMNS_MAPPING.values()),
|
167 |
elem_id="1xA100-table",
|
168 |
)
|
169 |
-
# Dummy dataframe for search
|
170 |
-
single_A100_for_search = gr.components.Dataframe(
|
171 |
-
value=single_A100_df,
|
172 |
-
datatype=COLUMNS_DATATYPES,
|
173 |
-
headers=list(COLUMNS_MAPPING.values()),
|
174 |
-
max_rows=None,
|
175 |
-
visible=False,
|
176 |
-
)
|
177 |
-
|
178 |
-
submit_button.click(
|
179 |
-
submit_query,
|
180 |
-
[
|
181 |
-
search_bar, backend_checkboxes, datatype_checkboxes, threshold_slider,
|
182 |
-
single_A100_for_search
|
183 |
-
],
|
184 |
-
[single_A100_leaderboard]
|
185 |
-
)
|
186 |
|
187 |
with gr.TabItem("π₯οΈ A100-80GB Plot π", id=1):
|
188 |
# Original leaderboard plot
|
@@ -195,6 +202,12 @@ with demo:
|
|
195 |
show_label=False,
|
196 |
)
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
with gr.Row():
|
199 |
with gr.Accordion("π Citation", open=False):
|
200 |
citation_button = gr.Textbox(
|
|
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
|
7 |
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, SINGLE_A100_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
|
8 |
+
from src.utils import restart_space, load_dataset_repo, make_clickable_model, make_clickable_score
|
9 |
from src.assets.css_html_js import custom_css
|
10 |
|
11 |
|
|
|
16 |
COLUMNS_MAPPING = {
|
17 |
"model": "Model π€",
|
18 |
"backend.name": "Backend π",
|
19 |
+
"backend.torch_dtype": "Load Dtype π₯",
|
20 |
"forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ",
|
21 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
|
22 |
+
"h4_score": "Average Open LLM Score β¬οΈ",
|
23 |
+
|
24 |
}
|
25 |
COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number", "markdown"]
|
26 |
SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"]
|
|
|
29 |
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
|
30 |
|
31 |
|
32 |
+
def get_benchmark_df(benchmark="1xA100-80GB"):
|
33 |
if llm_perf_dataset_repo:
|
34 |
llm_perf_dataset_repo.git_pull()
|
35 |
|
|
|
40 |
f"./llm-perf-dataset/reports/additional_data.csv")
|
41 |
bench_df = bench_df.merge(scores_df, on="model", how="left")
|
42 |
|
43 |
+
return bench_df
|
44 |
+
|
45 |
+
|
46 |
+
def get_benchmark_table(bench_df):
|
47 |
+
|
48 |
# filter
|
49 |
bench_df = bench_df[list(COLUMNS_MAPPING.keys())]
|
50 |
# rename
|
51 |
bench_df.rename(columns=COLUMNS_MAPPING, inplace=True)
|
52 |
# sort
|
53 |
bench_df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True)
|
54 |
+
# transform
|
55 |
+
bench_df["Model π€"] = bench_df["Model π€"].apply(make_clickable_model)
|
56 |
+
bench_df["Average Open LLM Score β¬οΈ"] = bench_df["Average Open LLM Score β¬οΈ"].apply(
|
57 |
+
make_clickable_score)
|
58 |
|
59 |
return bench_df
|
60 |
|
61 |
|
62 |
+
def get_benchmark_plot(bench_df):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
# untill falcon gets fixed / natively supported
|
65 |
bench_df = bench_df[bench_df["generate.latency(s)"] < 100]
|
66 |
|
67 |
fig = px.scatter(
|
68 |
+
bench_df, x="generate.latency(s)", y="h4_score",
|
69 |
color='model_type', symbol='backend.name', size='forward.peak_memory(MB)',
|
70 |
custom_data=['model', 'backend.name', 'backend.torch_dtype',
|
71 |
'forward.peak_memory(MB)', 'generate.throughput(tokens/s)'],
|
72 |
+
symbol_sequence=['triangle-up', 'circle'],
|
73 |
+
# as many distinct colors as there are model_type,backend.name couples
|
74 |
+
color_discrete_sequence=px.colors.qualitative.Light24,
|
75 |
)
|
76 |
|
77 |
fig.update_layout(
|
|
|
81 |
'xanchor': 'center',
|
82 |
'yanchor': 'top'
|
83 |
},
|
84 |
+
xaxis_title="Per 1000 Tokens Latency (s)",
|
85 |
+
yaxis_title="Average Open LLM Score",
|
86 |
+
legend_title="Model Type and Backend",
|
87 |
+
width=1000,
|
88 |
height=600,
|
89 |
+
legend=dict(
|
90 |
+
orientation="h",
|
91 |
+
yanchor="bottom",
|
92 |
+
y=-0.35,
|
93 |
+
xanchor="center",
|
94 |
+
x=0.5
|
95 |
+
)
|
96 |
)
|
97 |
|
98 |
fig.update_traces(
|
|
|
102 |
"Datatype: %{customdata[2]}",
|
103 |
"Peak Memory (MB): %{customdata[3]}",
|
104 |
"Throughput (tokens/s): %{customdata[4]}",
|
105 |
+
"Per 1000 Tokens Latency (s): %{y}",
|
106 |
+
"Average Open LLM Score: %{x}",
|
107 |
])
|
108 |
)
|
109 |
|
110 |
return fig
|
111 |
|
112 |
|
113 |
+
def filter_query(text, backends, datatypes, threshold, benchmark="1xA100-80GB"):
|
114 |
+
|
115 |
+
raw_df = get_benchmark_df(benchmark=benchmark)
|
116 |
+
|
117 |
+
filtered_df = raw_df[
|
118 |
+
raw_df["model"].str.lower().str.contains(text.lower()) &
|
119 |
+
raw_df["backend.name"].isin(backends) &
|
120 |
+
raw_df["Dbackend.torch_dtype"].isin(datatypes) &
|
121 |
+
(raw_df["h4_score"] >= threshold)
|
122 |
+
]
|
123 |
+
|
124 |
+
filtered_table = get_benchmark_table(filtered_df)
|
125 |
+
filtered_plot = get_benchmark_plot(filtered_df)
|
126 |
+
|
127 |
+
return filtered_table, filtered_plot
|
128 |
+
|
129 |
+
|
130 |
+
# Dataframes
|
131 |
+
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
|
132 |
+
single_A100_table = get_benchmark_table(single_A100_df)
|
133 |
+
single_A100_plot = get_benchmark_plot(single_A100_df)
|
134 |
|
135 |
# Demo interface
|
136 |
demo = gr.Blocks(css=custom_css)
|
|
|
166 |
elem_id="datatype-checkboxes",
|
167 |
)
|
168 |
threshold_slider = gr.Slider(
|
169 |
+
label="Average Open LLM Score π",
|
170 |
info="lter by minimum average H4 score",
|
171 |
value=0.0,
|
172 |
elem_id="threshold-slider",
|
|
|
185 |
|
186 |
# Original leaderboard table
|
187 |
single_A100_leaderboard = gr.components.Dataframe(
|
188 |
+
value=single_A100_table,
|
189 |
datatype=COLUMNS_DATATYPES,
|
190 |
headers=list(COLUMNS_MAPPING.values()),
|
191 |
elem_id="1xA100-table",
|
192 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
with gr.TabItem("π₯οΈ A100-80GB Plot π", id=1):
|
195 |
# Original leaderboard plot
|
|
|
202 |
show_label=False,
|
203 |
)
|
204 |
|
205 |
+
submit_button.click(
|
206 |
+
filter_query,
|
207 |
+
[search_bar, backend_checkboxes, datatype_checkboxes, threshold_slider],
|
208 |
+
[single_A100_leaderboard]
|
209 |
+
)
|
210 |
+
|
211 |
with gr.Row():
|
212 |
with gr.Accordion("π Citation", open=False):
|
213 |
citation_button = gr.Textbox(
|
src/utils.py
CHANGED
@@ -66,23 +66,3 @@ def make_clickable_model(model_name):
|
|
66 |
def make_clickable_score(score):
|
67 |
link = f"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard"
|
68 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{score}</a>'
|
69 |
-
|
70 |
-
|
71 |
-
def extract_score_from_clickable(clickable_score) -> float:
|
72 |
-
return float(re.findall(r"\d+\.\d+", clickable_score)[-1])
|
73 |
-
|
74 |
-
|
75 |
-
def submit_query(text, backends, datatypes, threshold, raw_df):
|
76 |
-
raw_df["Average H4 Score β¬οΈ"] = raw_df["Average H4 Score β¬οΈ"].apply(
|
77 |
-
extract_score_from_clickable)
|
78 |
-
|
79 |
-
filtered_df = raw_df[
|
80 |
-
raw_df["Model π€"].str.lower().str.contains(text.lower()) &
|
81 |
-
raw_df["Backend π"].isin(backends) &
|
82 |
-
raw_df["Datatype π₯"].isin(datatypes) &
|
83 |
-
(raw_df["Average H4 Score β¬οΈ"] >= threshold)
|
84 |
-
]
|
85 |
-
|
86 |
-
filtered_df["Average H4 Score β¬οΈ"] = filtered_df["Average H4 Score β¬οΈ"].apply(
|
87 |
-
make_clickable_score)
|
88 |
-
return filtered_df
|
|
|
66 |
def make_clickable_score(score):
|
67 |
link = f"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard"
|
68 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{score}</a>'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|