BenchmarkBot commited on
Commit
cdf41e7
·
1 Parent(s): a189046

transpose energy

Browse files
Files changed (1) hide show
  1. app.py +8 -3
app.py CHANGED
@@ -37,7 +37,7 @@ ALL_COLUMNS_MAPPING = {
37
  #
38
  "generate.peak_memory(MB)": "Memory (MB) ⬇️",
39
  "generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
40
- "generate.energy_consumption(kWh/token)": "Energy (kWh/token) ⬇️",
41
  "best_score": "Best Score (%) ⬆️",
42
  #
43
  "best_scored_model": "Best Scored LLM 🏆",
@@ -84,8 +84,12 @@ def get_benchmark_df(benchmark="Succeeded-1xA100-80GB"):
84
  merged_df = benchmark_df.merge(
85
  clusters_df, left_on="model", right_on="best_scored_model"
86
  )
87
- # fix energy consumption nans
88
- merged_df["generate.energy_consumption(kWh/token)"].fillna("N/A", inplace=True)
 
 
 
 
89
 
90
  # add optimizations
91
  merged_df["optimizations"] = merged_df["backend.bettertransformer"].apply(
@@ -95,6 +99,7 @@ def get_benchmark_df(benchmark="Succeeded-1xA100-80GB"):
95
  merged_df["quantization"] = merged_df["backend.quantization_strategy"].apply(
96
  lambda x: "BnB.4bit" if x == "bnb" else ("GPTQ.4bit" if x == "gptq" else "None")
97
  )
 
98
  # # distance to 100% score
99
  # score_distance = 100 - merged_df["best_score"]
100
  # # distance to 0s latency
 
37
  #
38
  "generate.peak_memory(MB)": "Memory (MB) ⬇️",
39
  "generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
40
+ "generate.energy_consumption(tokens/kWh)": "Energy (tokens/kWh) ⬇️",
41
  "best_score": "Best Score (%) ⬆️",
42
  #
43
  "best_scored_model": "Best Scored LLM 🏆",
 
84
  merged_df = benchmark_df.merge(
85
  clusters_df, left_on="model", right_on="best_scored_model"
86
  )
87
+ # transpose energy consumption
88
+ merged_df["generate.energy_consumption(tokens/kWh)"] = 1 / merged_df[
89
+ "generate.energy_consumption(kWh/token)"
90
+ ].fillna(1)
91
+ # fix nan values
92
+ merged_df[merged_df["generate.energy_consumption(tokens/kWh)"] == 1] = "N/A"
93
 
94
  # add optimizations
95
  merged_df["optimizations"] = merged_df["backend.bettertransformer"].apply(
 
99
  merged_df["quantization"] = merged_df["backend.quantization_strategy"].apply(
100
  lambda x: "BnB.4bit" if x == "bnb" else ("GPTQ.4bit" if x == "gptq" else "None")
101
  )
102
+
103
  # # distance to 100% score
104
  # score_distance = 100 - merged_df["best_score"]
105
  # # distance to 0s latency