Spaces:
Running
Running
BenchmarkBot
commited on
Commit
β’
d8b9ce2
1
Parent(s):
07c6067
filtered out some columns
Browse files- app.py +21 -25
- src/assets/text_content.py +1 -4
app.py
CHANGED
@@ -1,28 +1,25 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
-
from huggingface_hub import HfApi
|
5 |
-
from huggingface_hub import Repository
|
6 |
from apscheduler.schedulers.background import BackgroundScheduler
|
7 |
|
8 |
-
from src.assets.text_content import
|
9 |
-
from src.assets.css_html_js import custom_css
|
10 |
|
11 |
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
|
12 |
|
13 |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
|
14 |
LLM_PERF_DATASET_REPO = "optimum/llm-perf"
|
15 |
|
16 |
-
api = HfApi()
|
17 |
-
|
18 |
|
19 |
def restart_space():
|
20 |
-
|
21 |
repo_id=LLM_PERF_LEADERBOARD_REPO, token=OPTIMUM_TOKEN
|
22 |
)
|
23 |
|
24 |
|
25 |
-
def
|
26 |
llm_perf_repo = None
|
27 |
if OPTIMUM_TOKEN:
|
28 |
print("Loading LLM-Perf-Dataset from Hub...")
|
@@ -37,29 +34,26 @@ def load_all_info_from_hub():
|
|
37 |
return llm_perf_repo
|
38 |
|
39 |
|
40 |
-
llm_perf_repo = load_all_info_from_hub()
|
41 |
-
|
42 |
-
|
43 |
-
def has_no_nan_values(df, columns):
|
44 |
-
return df[columns].notna().all(axis=1)
|
45 |
-
|
46 |
-
|
47 |
-
def has_nan_values(df, columns):
|
48 |
-
return df[columns].isna().any(axis=1)
|
49 |
-
|
50 |
-
|
51 |
def get_leaderboard_df():
|
52 |
if llm_perf_repo:
|
53 |
llm_perf_repo.git_pull()
|
54 |
|
55 |
df = pd.read_csv("./llm-perf/reports/cuda_1_100/inference_report.csv")
|
56 |
-
|
|
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
|
|
60 |
|
61 |
-
|
62 |
-
leaderboard_df = original_df.copy()
|
63 |
|
64 |
|
65 |
def refresh():
|
@@ -68,14 +62,16 @@ def refresh():
|
|
68 |
return leaderboard_df
|
69 |
|
70 |
|
|
|
|
|
71 |
demo = gr.Blocks(css=custom_css)
|
72 |
with demo:
|
73 |
gr.HTML(TITLE)
|
74 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
75 |
|
76 |
-
print("rendering tab...")
|
77 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
78 |
-
with gr.TabItem("
|
|
|
79 |
leaderboard_table_lite = gr.components.Dataframe(
|
80 |
value=leaderboard_df,
|
81 |
headers=leaderboard_df.columns.tolist(),
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
+
from huggingface_hub import HfApi, Repository
|
|
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
|
7 |
+
from src.assets.text_content import TITLE, INTRODUCTION_TEXT
|
8 |
+
from src.assets.css_html_js import custom_css, get_window_url_params
|
9 |
|
10 |
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
|
11 |
|
12 |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
|
13 |
LLM_PERF_DATASET_REPO = "optimum/llm-perf"
|
14 |
|
|
|
|
|
15 |
|
16 |
def restart_space():
|
17 |
+
HfApi().restart_space(
|
18 |
repo_id=LLM_PERF_LEADERBOARD_REPO, token=OPTIMUM_TOKEN
|
19 |
)
|
20 |
|
21 |
|
22 |
+
def load_dataset_repo():
|
23 |
llm_perf_repo = None
|
24 |
if OPTIMUM_TOKEN:
|
25 |
print("Loading LLM-Perf-Dataset from Hub...")
|
|
|
34 |
return llm_perf_repo
|
35 |
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
def get_leaderboard_df():
|
38 |
if llm_perf_repo:
|
39 |
llm_perf_repo.git_pull()
|
40 |
|
41 |
df = pd.read_csv("./llm-perf/reports/cuda_1_100/inference_report.csv")
|
42 |
+
df = df[["model", "backend.name", "backend.torch_dtype", "backend.quantization",
|
43 |
+
"generate.latency(s)", "generate.throughput(tokens/s)"]]
|
44 |
|
45 |
+
df.rename(columns={
|
46 |
+
"model": "Model",
|
47 |
+
"backend.name": "Backend",
|
48 |
+
"backend.torch_dtype": "Torch dtype",
|
49 |
+
"backend.quantization": "Quantization",
|
50 |
+
"generate.latency(s)": "Latency (s)",
|
51 |
+
"generate.throughput(tokens/s)": "Throughput (tokens/s)"
|
52 |
+
}, inplace=True)
|
53 |
|
54 |
+
df.sort_values(by=["Throughput (tokens/s)"], ascending=False, inplace=True)
|
55 |
|
56 |
+
return df
|
|
|
57 |
|
58 |
|
59 |
def refresh():
|
|
|
62 |
return leaderboard_df
|
63 |
|
64 |
|
65 |
+
llm_perf_repo = load_dataset_repo()
|
66 |
+
|
67 |
demo = gr.Blocks(css=custom_css)
|
68 |
with demo:
|
69 |
gr.HTML(TITLE)
|
70 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
71 |
|
|
|
72 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
73 |
+
with gr.TabItem("Vanilla Benchmark", elem_id="vanilla-benchmark", id=0):
|
74 |
+
leaderboard_df = get_leaderboard_df()
|
75 |
leaderboard_table_lite = gr.components.Dataframe(
|
76 |
value=leaderboard_df,
|
77 |
headers=leaderboard_df.columns.tolist(),
|
src/assets/text_content.py
CHANGED
@@ -1,8 +1,5 @@
|
|
1 |
TITLE = """<h1 align="center" id="space-title">π€ Open LLM-Perf Leaderboard</h1>"""
|
2 |
|
3 |
INTRODUCTION_TEXT = f"""
|
4 |
-
The π€ Open LLM-Perf Leaderboard aims to benchmark the performance of
|
5 |
-
"""
|
6 |
-
|
7 |
-
LLM_BENCHMARKS_TEXT = f"""
|
8 |
"""
|
|
|
1 |
TITLE = """<h1 align="center" id="space-title">π€ Open LLM-Perf Leaderboard</h1>"""
|
2 |
|
3 |
INTRODUCTION_TEXT = f"""
|
4 |
+
The π€ Open LLM-Perf Leaderboard aims to benchmark the performance (latency & throughput) of Large Language Models (LLMs) on different backends and hardwares using [Optimum-Benchmark](https://github.com/huggingface/optimum-benchmark)
|
|
|
|
|
|
|
5 |
"""
|