Spaces:
Running
Running
Commit
β’
e47d0b2
1
Parent(s):
8e30a31
add intel CPU to leaderboard (#32)
Browse files- add intel to leaderboard (0471f33e960a94686e670c0c70fb4c2cd8c5ae42)
- add intel to leaderboard (591a3e40a5c2aa1bcc27c2e9464dbf45366f6c70)
- intel results accesible in the leaderboard (003f467675456e4814fd68f1fd6fcb4b875b967d)
- add intel results to leaderboard (9f82a2bedf611b6097a56acf8504e93c5ae7a1e5)
- add intel results to leaderboard (d2401bdfdf5d857e255a1877f54b9fd846ad1b11)
- add intel results to leaderboard (39105fc16c53a5878e618dd07993eaba296d2696)
- fix hardware name (d7880b24c12052284d96ea76ef7a07039401d569)
- add documentation about the intel hardware (504caea55fac11d7f1170bf6d26f2b7b153e609b)
- add documentation about the intel hardware (4aa590a679e0c52ee0f3a4f187792a366d5b1299)
- .gitignore +2 -0
- app.py +20 -16
- hardware.yml +46 -0
- src/hardware.py +26 -0
- src/llm_perf.py +7 -5
- src/panel.py +39 -39
.gitignore
CHANGED
@@ -4,5 +4,7 @@ __pycache__/
|
|
4 |
*ipynb
|
5 |
.vscode/
|
6 |
|
|
|
|
|
7 |
dataset/
|
8 |
.venv
|
|
|
4 |
*ipynb
|
5 |
.vscode/
|
6 |
|
7 |
+
work-in-progress/
|
8 |
+
|
9 |
dataset/
|
10 |
.venv
|
app.py
CHANGED
@@ -4,6 +4,7 @@ from src.assets import custom_css
|
|
4 |
|
5 |
# from src.attention import create_attn_plots
|
6 |
from src.content import ABOUT, CITATION_BUTTON, CITATION_BUTTON_LABEL, LOGO, TITLE
|
|
|
7 |
from src.leaderboard import create_leaderboard_table
|
8 |
from src.llm_perf import get_llm_perf_df
|
9 |
from src.map import create_lat_score_mem_plot
|
@@ -13,14 +14,7 @@ from src.panel import (
|
|
13 |
create_select_callback,
|
14 |
)
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
MACHINE_TO_HARDWARE = {
|
19 |
-
"1xA10": "A10-24GB-150W π₯οΈ",
|
20 |
-
"1xA100": "A100-80GB-275W π₯οΈ",
|
21 |
-
"1xT4": "T4-16GB-70W π₯οΈ",
|
22 |
-
# "1xH100": "H100-80GB-700W π₯οΈ",
|
23 |
-
}
|
24 |
|
25 |
|
26 |
demo = gr.Blocks(css=custom_css)
|
@@ -29,12 +23,19 @@ with demo:
|
|
29 |
gr.HTML(TITLE, elem_classes="title")
|
30 |
####################### HARDWARE TABS #######################
|
31 |
with gr.Tabs(elem_classes="tabs"):
|
32 |
-
for id,
|
33 |
-
with gr.TabItem(
|
34 |
-
#######################
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
(
|
36 |
filter_button,
|
37 |
machine_textbox,
|
|
|
38 |
score_slider,
|
39 |
memory_slider,
|
40 |
backend_checkboxes,
|
@@ -42,17 +43,18 @@ with demo:
|
|
42 |
optimization_checkboxes,
|
43 |
quantization_checkboxes,
|
44 |
kernels_checkboxes,
|
45 |
-
) = create_control_panel(machine=machine)
|
46 |
####################### HARDWARE SUBTABS #######################
|
47 |
with gr.Tabs(elem_classes="subtabs"):
|
48 |
-
open_llm_perf_df = get_llm_perf_df(machine=machine)
|
49 |
####################### LEADERBOARD TAB #######################
|
50 |
with gr.TabItem("Leaderboard π
", id=0):
|
51 |
search_bar, columns_checkboxes, leaderboard_table = (
|
52 |
create_leaderboard_table(open_llm_perf_df)
|
53 |
)
|
54 |
-
|
55 |
-
|
|
|
56 |
###################### ATTENTIONS SPEEDUP TAB #######################
|
57 |
# with gr.TabItem("Attention π", id=2):
|
58 |
# attn_prefill_plot, attn_decode_plot = create_attn_plots(
|
@@ -69,6 +71,7 @@ with demo:
|
|
69 |
filter_button,
|
70 |
# inputs
|
71 |
machine_textbox,
|
|
|
72 |
score_slider,
|
73 |
memory_slider,
|
74 |
backend_checkboxes,
|
@@ -91,6 +94,7 @@ with demo:
|
|
91 |
create_select_callback(
|
92 |
# inputs
|
93 |
machine_textbox,
|
|
|
94 |
# interactive
|
95 |
columns_checkboxes,
|
96 |
search_bar,
|
@@ -99,7 +103,7 @@ with demo:
|
|
99 |
)
|
100 |
|
101 |
####################### ABOUT TAB #######################
|
102 |
-
with gr.TabItem("About π", id=
|
103 |
gr.Markdown(ABOUT, elem_classes="descriptive-text")
|
104 |
####################### CITATION
|
105 |
with gr.Row():
|
|
|
4 |
|
5 |
# from src.attention import create_attn_plots
|
6 |
from src.content import ABOUT, CITATION_BUTTON, CITATION_BUTTON_LABEL, LOGO, TITLE
|
7 |
+
from src.hardware import load_hardware_configs
|
8 |
from src.leaderboard import create_leaderboard_table
|
9 |
from src.llm_perf import get_llm_perf_df
|
10 |
from src.map import create_lat_score_mem_plot
|
|
|
14 |
create_select_callback,
|
15 |
)
|
16 |
|
17 |
+
configs = load_hardware_configs("hardware.yml")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
demo = gr.Blocks(css=custom_css)
|
|
|
23 |
gr.HTML(TITLE, elem_classes="title")
|
24 |
####################### HARDWARE TABS #######################
|
25 |
with gr.Tabs(elem_classes="tabs"):
|
26 |
+
for id, config in enumerate(configs):
|
27 |
+
with gr.TabItem(config.description, id=id):
|
28 |
+
####################### HARDWARE DETAILS #######################
|
29 |
+
if config.detail:
|
30 |
+
gr.Markdown(config.detail, elem_classes="descriptive-text")
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
# ####################### CONTROL PANEL #######################
|
35 |
(
|
36 |
filter_button,
|
37 |
machine_textbox,
|
38 |
+
subsets_values,
|
39 |
score_slider,
|
40 |
memory_slider,
|
41 |
backend_checkboxes,
|
|
|
43 |
optimization_checkboxes,
|
44 |
quantization_checkboxes,
|
45 |
kernels_checkboxes,
|
46 |
+
) = create_control_panel(machine=config.machine, subsets=config.subsets, hardware_provider=config.hardware_provider)
|
47 |
####################### HARDWARE SUBTABS #######################
|
48 |
with gr.Tabs(elem_classes="subtabs"):
|
49 |
+
open_llm_perf_df = get_llm_perf_df(machine=config.machine, subsets=config.subsets)
|
50 |
####################### LEADERBOARD TAB #######################
|
51 |
with gr.TabItem("Leaderboard π
", id=0):
|
52 |
search_bar, columns_checkboxes, leaderboard_table = (
|
53 |
create_leaderboard_table(open_llm_perf_df)
|
54 |
)
|
55 |
+
if config.hardware_provider != "intel": # TODO intel CPU does not measure the memory requirements correctly, so disable the graph feature until we fix the underlying issue
|
56 |
+
with gr.TabItem("Find Your Best Model π§", id=1):
|
57 |
+
lat_score_mem_plot = create_lat_score_mem_plot(open_llm_perf_df)
|
58 |
###################### ATTENTIONS SPEEDUP TAB #######################
|
59 |
# with gr.TabItem("Attention π", id=2):
|
60 |
# attn_prefill_plot, attn_decode_plot = create_attn_plots(
|
|
|
71 |
filter_button,
|
72 |
# inputs
|
73 |
machine_textbox,
|
74 |
+
subsets_values,
|
75 |
score_slider,
|
76 |
memory_slider,
|
77 |
backend_checkboxes,
|
|
|
94 |
create_select_callback(
|
95 |
# inputs
|
96 |
machine_textbox,
|
97 |
+
subsets_values,
|
98 |
# interactive
|
99 |
columns_checkboxes,
|
100 |
search_bar,
|
|
|
103 |
)
|
104 |
|
105 |
####################### ABOUT TAB #######################
|
106 |
+
with gr.TabItem("About π", id=len(configs)):
|
107 |
gr.Markdown(ABOUT, elem_classes="descriptive-text")
|
108 |
####################### CITATION
|
109 |
with gr.Row():
|
hardware.yml
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- machine: 1xA10
|
2 |
+
description: A10-24GB-150W π₯οΈ
|
3 |
+
hardware_provider: nvidia
|
4 |
+
hardware_type: gpu
|
5 |
+
subsets:
|
6 |
+
- unquantized
|
7 |
+
- awq
|
8 |
+
- bnb
|
9 |
+
- gptq
|
10 |
+
backends:
|
11 |
+
- pytorch
|
12 |
+
|
13 |
+
- machine: 1xA100
|
14 |
+
description: A100-80GB-275W π₯οΈ
|
15 |
+
hardware_provider: nvidia
|
16 |
+
hardware_type: gpu
|
17 |
+
subsets:
|
18 |
+
- unquantized
|
19 |
+
- awq
|
20 |
+
- bnb
|
21 |
+
- gptq
|
22 |
+
backends:
|
23 |
+
- pytorch
|
24 |
+
|
25 |
+
- machine: 1xT4
|
26 |
+
description: T4-16GB-70W π₯οΈ
|
27 |
+
hardware_provider: nvidia
|
28 |
+
hardware_type: gpu
|
29 |
+
subsets:
|
30 |
+
- unquantized
|
31 |
+
- awq
|
32 |
+
- bnb
|
33 |
+
- gptq
|
34 |
+
backends:
|
35 |
+
- pytorch
|
36 |
+
|
37 |
+
- machine: 32vCPU-C7i
|
38 |
+
description: Intel-Xeon-SPR-385W π₯οΈ
|
39 |
+
detail: |
|
40 |
+
We tested the [32vCPU AWS C7i](https://aws.amazon.com/ec2/instance-types/c7i/) instance for the benchmark.
|
41 |
+
hardware_provider: intel
|
42 |
+
hardware_type: cpu
|
43 |
+
subsets:
|
44 |
+
- unquantized
|
45 |
+
backends:
|
46 |
+
- pytorch
|
src/hardware.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List
|
2 |
+
|
3 |
+
import yaml
|
4 |
+
|
5 |
+
|
6 |
+
class HardwareConfig:
|
7 |
+
def __init__(self, data: Dict[str, Any]):
|
8 |
+
self.machine = data["machine"]
|
9 |
+
self.description = data["description"]
|
10 |
+
self.hardware_provider = data["hardware_provider"]
|
11 |
+
self.hardware_type = data["hardware_type"]
|
12 |
+
self.subsets = data["subsets"]
|
13 |
+
self.backends = data["backends"]
|
14 |
+
self.detail = data.get("detail", None)
|
15 |
+
|
16 |
+
def __repr__(self):
|
17 |
+
return (
|
18 |
+
f"HardwareConfig(machine='{self.machine}', description='{self.description}', "
|
19 |
+
f"hardware_provider={self.hardware_provider}, hardware_type={self.hardware_type}, subsets={self.subsets}, backends={self.backends})"
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
def load_hardware_configs(file_path: str) -> List[HardwareConfig]:
|
24 |
+
with open(file_path, "r") as file:
|
25 |
+
data = yaml.safe_load(file)
|
26 |
+
return [HardwareConfig(config) for config in data]
|
src/llm_perf.py
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
import os
|
|
|
2 |
|
3 |
import pandas as pd
|
4 |
|
|
|
|
|
5 |
from .utils import process_kernels, process_quantizations
|
6 |
|
7 |
DATASET_DIRECTORY = "dataset"
|
@@ -28,13 +31,12 @@ COLUMNS_MAPPING = {
|
|
28 |
"#Params (B)": "Params (B)",
|
29 |
}
|
30 |
SORTING_COLUMNS = ["Open LLM Score (%)", "Decode (tokens/s)", "Prefill (s)"]
|
31 |
-
SUBSETS = ["unquantized", "awq", "bnb", "gptq"]
|
32 |
SORTING_ASCENDING = [False, True, False]
|
33 |
|
34 |
|
35 |
-
def get_raw_llm_perf_df(machine: str
|
36 |
dfs = []
|
37 |
-
for subset in
|
38 |
try:
|
39 |
dfs.append(
|
40 |
pd.read_csv(
|
@@ -110,14 +112,14 @@ def processed_llm_perf_df(llm_perf_df):
|
|
110 |
return llm_perf_df
|
111 |
|
112 |
|
113 |
-
def get_llm_perf_df(machine: str
|
114 |
if not os.path.exists(DATASET_DIRECTORY):
|
115 |
os.makedirs(DATASET_DIRECTORY)
|
116 |
|
117 |
if os.path.exists(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv"):
|
118 |
llm_perf_df = pd.read_csv(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv")
|
119 |
else:
|
120 |
-
llm_perf_df = get_raw_llm_perf_df(machine)
|
121 |
llm_perf_df = processed_llm_perf_df(llm_perf_df)
|
122 |
llm_perf_df.to_csv(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv", index=False)
|
123 |
|
|
|
1 |
import os
|
2 |
+
from typing import List
|
3 |
|
4 |
import pandas as pd
|
5 |
|
6 |
+
from src.hardware import HardwareConfig
|
7 |
+
|
8 |
from .utils import process_kernels, process_quantizations
|
9 |
|
10 |
DATASET_DIRECTORY = "dataset"
|
|
|
31 |
"#Params (B)": "Params (B)",
|
32 |
}
|
33 |
SORTING_COLUMNS = ["Open LLM Score (%)", "Decode (tokens/s)", "Prefill (s)"]
|
|
|
34 |
SORTING_ASCENDING = [False, True, False]
|
35 |
|
36 |
|
37 |
+
def get_raw_llm_perf_df(machine: str, subsets: List[str]):
|
38 |
dfs = []
|
39 |
+
for subset in subsets:
|
40 |
try:
|
41 |
dfs.append(
|
42 |
pd.read_csv(
|
|
|
112 |
return llm_perf_df
|
113 |
|
114 |
|
115 |
+
def get_llm_perf_df(machine: str, subsets: List[str]):
|
116 |
if not os.path.exists(DATASET_DIRECTORY):
|
117 |
os.makedirs(DATASET_DIRECTORY)
|
118 |
|
119 |
if os.path.exists(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv"):
|
120 |
llm_perf_df = pd.read_csv(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv")
|
121 |
else:
|
122 |
+
llm_perf_df = get_raw_llm_perf_df(machine, subsets)
|
123 |
llm_perf_df = processed_llm_perf_df(llm_perf_df)
|
124 |
llm_perf_df.to_csv(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv", index=False)
|
125 |
|
src/panel.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from src.leaderboard import get_leaderboard_df
|
@@ -8,9 +10,26 @@ from src.llm_perf import get_llm_perf_df
|
|
8 |
from src.map import get_lat_score_mem_fig
|
9 |
|
10 |
|
11 |
-
def create_control_panel(machine: str):
|
12 |
# controls
|
13 |
machine_textbox = gr.Textbox(value=machine, visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
with gr.Accordion("Control Panel ποΈ", open=False, elem_id="control-panel"):
|
15 |
with gr.Row():
|
16 |
with gr.Column(scale=2, variant="panel"):
|
@@ -32,8 +51,8 @@ def create_control_panel(machine: str):
|
|
32 |
with gr.Column(scale=1, variant="panel"):
|
33 |
backend_checkboxes = gr.CheckboxGroup(
|
34 |
label="Backends π",
|
35 |
-
choices=
|
36 |
-
value=
|
37 |
info="βοΈ Select the backends",
|
38 |
elem_id="backend-checkboxes",
|
39 |
)
|
@@ -49,8 +68,8 @@ def create_control_panel(machine: str):
|
|
49 |
with gr.Column(scale=1, variant="panel"):
|
50 |
optimization_checkboxes = gr.CheckboxGroup(
|
51 |
label="Attentions ποΈ",
|
52 |
-
choices=
|
53 |
-
value=
|
54 |
info="βοΈ Select the optimization",
|
55 |
elem_id="optimization-checkboxes",
|
56 |
)
|
@@ -58,20 +77,8 @@ def create_control_panel(machine: str):
|
|
58 |
with gr.Column(scale=1, variant="panel"):
|
59 |
quantization_checkboxes = gr.CheckboxGroup(
|
60 |
label="Quantizations ποΈ",
|
61 |
-
choices=
|
62 |
-
|
63 |
-
"BnB.4bit",
|
64 |
-
"BnB.8bit",
|
65 |
-
"AWQ.4bit",
|
66 |
-
"GPTQ.4bit",
|
67 |
-
],
|
68 |
-
value=[
|
69 |
-
"Unquantized",
|
70 |
-
"BnB.4bit",
|
71 |
-
"BnB.8bit",
|
72 |
-
"AWQ.4bit",
|
73 |
-
"GPTQ.4bit",
|
74 |
-
],
|
75 |
info="βοΈ Select the quantization schemes",
|
76 |
elem_id="quantization-checkboxes",
|
77 |
elem_classes="boxed-option",
|
@@ -79,20 +86,8 @@ def create_control_panel(machine: str):
|
|
79 |
with gr.Column(scale=1, variant="panel"):
|
80 |
kernels_checkboxes = gr.CheckboxGroup(
|
81 |
label="Kernels βοΈ",
|
82 |
-
choices=
|
83 |
-
|
84 |
-
"GPTQ.ExllamaV1",
|
85 |
-
"GPTQ.ExllamaV2",
|
86 |
-
"AWQ.GEMM",
|
87 |
-
"AWQ.GEMV",
|
88 |
-
],
|
89 |
-
value=[
|
90 |
-
"No Kernel",
|
91 |
-
"GPTQ.ExllamaV1",
|
92 |
-
"GPTQ.ExllamaV2",
|
93 |
-
"AWQ.GEMM",
|
94 |
-
"AWQ.GEMV",
|
95 |
-
],
|
96 |
info="βοΈ Select the custom kernels",
|
97 |
elem_id="kernel-checkboxes",
|
98 |
elem_classes="boxed-option",
|
@@ -107,6 +102,7 @@ def create_control_panel(machine: str):
|
|
107 |
return (
|
108 |
filter_button,
|
109 |
machine_textbox,
|
|
|
110 |
score_slider,
|
111 |
memory_slider,
|
112 |
backend_checkboxes,
|
@@ -119,6 +115,7 @@ def create_control_panel(machine: str):
|
|
119 |
|
120 |
def filter_rows_fn(
|
121 |
machine,
|
|
|
122 |
# inputs
|
123 |
score,
|
124 |
memory,
|
@@ -131,7 +128,7 @@ def filter_rows_fn(
|
|
131 |
columns,
|
132 |
search,
|
133 |
):
|
134 |
-
llm_perf_df = get_llm_perf_df(machine=machine)
|
135 |
# print(attentions)
|
136 |
# print(llm_perf_df["Attention ποΈ"].unique())
|
137 |
filtered_llm_perf_df = llm_perf_df[
|
@@ -145,7 +142,7 @@ def filter_rows_fn(
|
|
145 |
& (llm_perf_df["Memory (MB)"] <= memory)
|
146 |
]
|
147 |
selected_filtered_llm_perf_df = select_columns_fn(
|
148 |
-
machine, columns, search, filtered_llm_perf_df
|
149 |
)
|
150 |
selected_filtered_lat_score_mem_fig = get_lat_score_mem_fig(filtered_llm_perf_df)
|
151 |
# filtered_bt_prefill_fig = get_bt_prefill_fig(filtered_df)
|
@@ -172,6 +169,7 @@ def create_control_callback(
|
|
172 |
filter_button,
|
173 |
# fixed
|
174 |
machine_textbox,
|
|
|
175 |
# inputs
|
176 |
score_slider,
|
177 |
memory_slider,
|
@@ -198,6 +196,7 @@ def create_control_callback(
|
|
198 |
inputs=[
|
199 |
# fixed
|
200 |
machine_textbox,
|
|
|
201 |
# inputs
|
202 |
score_slider,
|
203 |
memory_slider,
|
@@ -223,9 +222,9 @@ def create_control_callback(
|
|
223 |
)
|
224 |
|
225 |
|
226 |
-
def select_columns_fn(machine, columns, search, llm_perf_df=None):
|
227 |
if llm_perf_df is None:
|
228 |
-
llm_perf_df = get_llm_perf_df(machine=machine)
|
229 |
|
230 |
selected_leaderboard_df = get_leaderboard_df(llm_perf_df)
|
231 |
selected_leaderboard_df = selected_leaderboard_df[
|
@@ -239,6 +238,7 @@ def select_columns_fn(machine, columns, search, llm_perf_df=None):
|
|
239 |
def create_select_callback(
|
240 |
# fixed
|
241 |
machine_textbox,
|
|
|
242 |
# interactive
|
243 |
columns_checkboxes,
|
244 |
search_bar,
|
@@ -247,11 +247,11 @@ def create_select_callback(
|
|
247 |
):
|
248 |
columns_checkboxes.change(
|
249 |
fn=select_columns_fn,
|
250 |
-
inputs=[machine_textbox, columns_checkboxes, search_bar],
|
251 |
outputs=[leaderboard_table],
|
252 |
)
|
253 |
search_bar.change(
|
254 |
fn=select_columns_fn,
|
255 |
-
inputs=[machine_textbox, columns_checkboxes, search_bar],
|
256 |
outputs=[leaderboard_table],
|
257 |
)
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
import gradio as gr
|
4 |
|
5 |
from src.leaderboard import get_leaderboard_df
|
|
|
10 |
from src.map import get_lat_score_mem_fig
|
11 |
|
12 |
|
13 |
+
def create_control_panel(machine: str, subsets: List[str], hardware_provider: str):
|
14 |
# controls
|
15 |
machine_textbox = gr.Textbox(value=machine, visible=False)
|
16 |
+
subsets_values = gr.State(value=subsets)
|
17 |
+
|
18 |
+
|
19 |
+
if hardware_provider == "nvidia":
|
20 |
+
backends = ["pytorch"]
|
21 |
+
attention_implementations = ["Eager", "SDPA", "FAv2"]
|
22 |
+
quantizations = ["Unquantized", "BnB.4bit", "BnB.8bit", "AWQ.4bit", "GPTQ.4bit"]
|
23 |
+
kernels = ["No Kernel", "GPTQ.ExllamaV1", "GPTQ.ExllamaV2", "AWQ.GEMM", "AWQ.GEMV"]
|
24 |
+
elif hardware_provider == "intel":
|
25 |
+
backends = ["pytorch", "onnxruntime", "openvino"]
|
26 |
+
attention_implementations = ["Eager"]
|
27 |
+
quantizations = ["Unquantized"]
|
28 |
+
kernels = ["No Kernel"]
|
29 |
+
else:
|
30 |
+
raise ValueError(f"Unknown hardware provider: {hardware_provider}")
|
31 |
+
|
32 |
+
|
33 |
with gr.Accordion("Control Panel ποΈ", open=False, elem_id="control-panel"):
|
34 |
with gr.Row():
|
35 |
with gr.Column(scale=2, variant="panel"):
|
|
|
51 |
with gr.Column(scale=1, variant="panel"):
|
52 |
backend_checkboxes = gr.CheckboxGroup(
|
53 |
label="Backends π",
|
54 |
+
choices=backends,
|
55 |
+
value=backends,
|
56 |
info="βοΈ Select the backends",
|
57 |
elem_id="backend-checkboxes",
|
58 |
)
|
|
|
68 |
with gr.Column(scale=1, variant="panel"):
|
69 |
optimization_checkboxes = gr.CheckboxGroup(
|
70 |
label="Attentions ποΈ",
|
71 |
+
choices=attention_implementations,
|
72 |
+
value=attention_implementations,
|
73 |
info="βοΈ Select the optimization",
|
74 |
elem_id="optimization-checkboxes",
|
75 |
)
|
|
|
77 |
with gr.Column(scale=1, variant="panel"):
|
78 |
quantization_checkboxes = gr.CheckboxGroup(
|
79 |
label="Quantizations ποΈ",
|
80 |
+
choices=quantizations,
|
81 |
+
value=quantizations,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
info="βοΈ Select the quantization schemes",
|
83 |
elem_id="quantization-checkboxes",
|
84 |
elem_classes="boxed-option",
|
|
|
86 |
with gr.Column(scale=1, variant="panel"):
|
87 |
kernels_checkboxes = gr.CheckboxGroup(
|
88 |
label="Kernels βοΈ",
|
89 |
+
choices=kernels,
|
90 |
+
value=kernels,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
info="βοΈ Select the custom kernels",
|
92 |
elem_id="kernel-checkboxes",
|
93 |
elem_classes="boxed-option",
|
|
|
102 |
return (
|
103 |
filter_button,
|
104 |
machine_textbox,
|
105 |
+
subsets_values,
|
106 |
score_slider,
|
107 |
memory_slider,
|
108 |
backend_checkboxes,
|
|
|
115 |
|
116 |
def filter_rows_fn(
|
117 |
machine,
|
118 |
+
subsets,
|
119 |
# inputs
|
120 |
score,
|
121 |
memory,
|
|
|
128 |
columns,
|
129 |
search,
|
130 |
):
|
131 |
+
llm_perf_df = get_llm_perf_df(machine=machine, subsets=subsets)
|
132 |
# print(attentions)
|
133 |
# print(llm_perf_df["Attention ποΈ"].unique())
|
134 |
filtered_llm_perf_df = llm_perf_df[
|
|
|
142 |
& (llm_perf_df["Memory (MB)"] <= memory)
|
143 |
]
|
144 |
selected_filtered_llm_perf_df = select_columns_fn(
|
145 |
+
machine, subsets, columns, search, filtered_llm_perf_df
|
146 |
)
|
147 |
selected_filtered_lat_score_mem_fig = get_lat_score_mem_fig(filtered_llm_perf_df)
|
148 |
# filtered_bt_prefill_fig = get_bt_prefill_fig(filtered_df)
|
|
|
169 |
filter_button,
|
170 |
# fixed
|
171 |
machine_textbox,
|
172 |
+
subsets_textbox,
|
173 |
# inputs
|
174 |
score_slider,
|
175 |
memory_slider,
|
|
|
196 |
inputs=[
|
197 |
# fixed
|
198 |
machine_textbox,
|
199 |
+
subsets_textbox,
|
200 |
# inputs
|
201 |
score_slider,
|
202 |
memory_slider,
|
|
|
222 |
)
|
223 |
|
224 |
|
225 |
+
def select_columns_fn(machine, subsets, columns, search, llm_perf_df=None):
|
226 |
if llm_perf_df is None:
|
227 |
+
llm_perf_df = get_llm_perf_df(machine=machine, subsets=subsets)
|
228 |
|
229 |
selected_leaderboard_df = get_leaderboard_df(llm_perf_df)
|
230 |
selected_leaderboard_df = selected_leaderboard_df[
|
|
|
238 |
def create_select_callback(
|
239 |
# fixed
|
240 |
machine_textbox,
|
241 |
+
subsets_values,
|
242 |
# interactive
|
243 |
columns_checkboxes,
|
244 |
search_bar,
|
|
|
247 |
):
|
248 |
columns_checkboxes.change(
|
249 |
fn=select_columns_fn,
|
250 |
+
inputs=[machine_textbox, subsets_values, columns_checkboxes, search_bar],
|
251 |
outputs=[leaderboard_table],
|
252 |
)
|
253 |
search_bar.change(
|
254 |
fn=select_columns_fn,
|
255 |
+
inputs=[machine_textbox, subsets_values, columns_checkboxes, search_bar],
|
256 |
outputs=[leaderboard_table],
|
257 |
)
|