Spaces:
Running
Running
BenchmarkBot
commited on
Commit
β’
e747f4e
1
Parent(s):
570bffa
added peak memory and made scores clickable
Browse files- app.py +57 -84
- src/assets/text_content.py +8 -0
- src/utils.py +9 -0
app.py
CHANGED
@@ -4,9 +4,9 @@ import gradio as gr
|
|
4 |
import pandas as pd
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
|
7 |
-
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
|
8 |
-
from src.utils import restart_space, load_dataset_repo, make_clickable_model
|
9 |
-
from src.assets.css_html_js import custom_css
|
10 |
|
11 |
|
12 |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
|
@@ -18,9 +18,10 @@ COLUMNS_MAPPING = {
|
|
18 |
"backend.name": "Backend π",
|
19 |
"backend.torch_dtype": "Datatype π₯",
|
20 |
"average": "Average H4 Score β¬οΈ",
|
|
|
21 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
|
22 |
}
|
23 |
-
COLUMNS_DATATYPES = ["markdown", "str", "str", "
|
24 |
SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"]
|
25 |
|
26 |
|
@@ -34,17 +35,15 @@ def get_benchmark_df(benchmark):
|
|
34 |
# load
|
35 |
bench_df = pd.read_csv(
|
36 |
f"./llm-perf-dataset/reports/{benchmark}/inference_report.csv")
|
|
|
37 |
scores_df = pd.read_csv(
|
38 |
f"./llm-perf-dataset/reports/average_scores.csv")
|
39 |
-
|
40 |
-
bench_df = bench_df.
|
41 |
-
|
42 |
|
43 |
# preprocess
|
44 |
bench_df["model"] = bench_df["model"].apply(make_clickable_model)
|
45 |
-
# set none datatype to float32
|
46 |
-
bench_df["backend.torch_dtype"] = bench_df["backend.torch_dtype"].fillna(
|
47 |
-
"float32")
|
48 |
# filter
|
49 |
bench_df = bench_df[list(COLUMNS_MAPPING.keys())]
|
50 |
# rename
|
@@ -55,37 +54,38 @@ def get_benchmark_df(benchmark):
|
|
55 |
return bench_df
|
56 |
|
57 |
|
58 |
-
def change_tab(query_param):
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
if (
|
63 |
-
isinstance(query_param, dict)
|
64 |
-
and "tab" in query_param
|
65 |
-
and query_param["tab"] == "evaluation"
|
66 |
-
):
|
67 |
-
return gr.Tabs.update(selected=1)
|
68 |
-
else:
|
69 |
-
return gr.Tabs.update(selected=0)
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
def submit_query(single_df, multi_df, text, backends, datatypes, threshold):
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
multi_df["Model π€"].str.contains(text) &
|
83 |
-
multi_df["Backend π"].isin(backends) &
|
84 |
-
multi_df["Datatype π₯"].isin(datatypes) &
|
85 |
-
(multi_df["Average H4 Score β¬οΈ"] >= threshold)
|
86 |
-
]
|
87 |
|
88 |
-
return
|
89 |
|
90 |
|
91 |
# Define demo interface
|
@@ -96,29 +96,29 @@ with demo:
|
|
96 |
|
97 |
with gr.Row():
|
98 |
search_bar = gr.Textbox(
|
99 |
-
label="
|
100 |
-
info="Search for a model
|
101 |
elem_id="search-bar",
|
102 |
)
|
103 |
backend_checkboxes = gr.CheckboxGroup(
|
|
|
104 |
choices=["pytorch", "onnxruntime"],
|
105 |
value=["pytorch", "onnxruntime"],
|
106 |
-
label="Backends π",
|
107 |
info="Select the backends",
|
108 |
elem_id="backend-checkboxes",
|
109 |
)
|
110 |
datatype_checkboxes = gr.CheckboxGroup(
|
|
|
111 |
choices=["float32", "float16"],
|
112 |
value=["float32", "float16"],
|
113 |
-
label="Datatypes π₯",
|
114 |
info="Select the load datatypes",
|
115 |
elem_id="datatype-checkboxes",
|
116 |
)
|
117 |
|
118 |
with gr.Row():
|
119 |
threshold_slider = gr.Slider(
|
120 |
-
label="H4
|
121 |
-
info="Filter by average H4 score",
|
122 |
value=0.0,
|
123 |
elem_id="threshold-slider",
|
124 |
)
|
@@ -132,13 +132,6 @@ with demo:
|
|
132 |
|
133 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
134 |
with gr.TabItem("π₯οΈ A100-80GB Benchmark ποΈ", elem_id="A100-benchmark", id=0):
|
135 |
-
|
136 |
-
SINGLE_A100_TEXT = """<h3>Single-GPU (1xA100):</h3>
|
137 |
-
<ul>
|
138 |
-
<li>Singleton Batch (1)</li>
|
139 |
-
<li>Thousand Tokens (1000)</li>
|
140 |
-
</ul>
|
141 |
-
"""
|
142 |
gr.HTML(SINGLE_A100_TEXT)
|
143 |
|
144 |
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
|
@@ -158,35 +151,15 @@ with demo:
|
|
158 |
visible=False,
|
159 |
)
|
160 |
|
161 |
-
with gr.TabItem("π₯οΈ 4xA100-80GB Benchmark ποΈ", elem_id="4xA100-benchmark", id=1):
|
162 |
-
MULTI_A100_TEXT = """<h3>Multi-GPU (4xA100):</h3>
|
163 |
-
<ul>
|
164 |
-
<li>Singleton Batch (1)</li>
|
165 |
-
<li>Thousand Tokens (1000)</li>
|
166 |
-
<li>Using <a href="https://huggingface.co/docs/accelerate" target="_blank">Accelerate</a>'s Auto Device Map</li>
|
167 |
-
</ul>"""
|
168 |
-
gr.HTML(MULTI_A100_TEXT)
|
169 |
-
multi_A100_df = get_benchmark_df(benchmark="4xA100-80GB")
|
170 |
-
multi_A100_leaderboard = gr.components.Dataframe(
|
171 |
-
value=multi_A100_df,
|
172 |
-
datatype=COLUMNS_DATATYPES,
|
173 |
-
headers=list(COLUMNS_MAPPING.values()),
|
174 |
-
elem_id="4xA100-table",
|
175 |
-
)
|
176 |
-
# Dummy Leaderboard table for handling the case when the user uses backspace key
|
177 |
-
multi_A100_for_search = gr.components.Dataframe(
|
178 |
-
value=multi_A100_df,
|
179 |
-
datatype=COLUMNS_DATATYPES,
|
180 |
-
headers=list(COLUMNS_MAPPING.values()),
|
181 |
-
max_rows=None,
|
182 |
-
visible=False,
|
183 |
-
)
|
184 |
-
|
185 |
# Callbacks
|
186 |
-
submit_button.click(
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
190 |
|
191 |
with gr.Row():
|
192 |
with gr.Accordion("π Citation", open=False):
|
@@ -196,13 +169,13 @@ with demo:
|
|
196 |
elem_id="citation-button",
|
197 |
).style(show_copy_button=True)
|
198 |
|
199 |
-
dummy = gr.Textbox(visible=False)
|
200 |
-
demo.load(
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
)
|
206 |
|
207 |
# Restart space every hour
|
208 |
scheduler = BackgroundScheduler()
|
|
|
4 |
import pandas as pd
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
|
7 |
+
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, SINGLE_A100_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
|
8 |
+
from src.utils import restart_space, load_dataset_repo, make_clickable_model, make_clickable_score, extract_score_from_clickable
|
9 |
+
from src.assets.css_html_js import custom_css
|
10 |
|
11 |
|
12 |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
|
|
|
18 |
"backend.name": "Backend π",
|
19 |
"backend.torch_dtype": "Datatype π₯",
|
20 |
"average": "Average H4 Score β¬οΈ",
|
21 |
+
"forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ",
|
22 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
|
23 |
}
|
24 |
+
COLUMNS_DATATYPES = ["markdown", "str", "str", "markdown", "number", "number"]
|
25 |
SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"]
|
26 |
|
27 |
|
|
|
35 |
# load
|
36 |
bench_df = pd.read_csv(
|
37 |
f"./llm-perf-dataset/reports/{benchmark}/inference_report.csv")
|
38 |
+
|
39 |
scores_df = pd.read_csv(
|
40 |
f"./llm-perf-dataset/reports/average_scores.csv")
|
41 |
+
bench_df = bench_df.merge(scores_df, on="model", how="left")
|
42 |
+
bench_df["average"] = bench_df["average"].apply(
|
43 |
+
make_clickable_score)
|
44 |
|
45 |
# preprocess
|
46 |
bench_df["model"] = bench_df["model"].apply(make_clickable_model)
|
|
|
|
|
|
|
47 |
# filter
|
48 |
bench_df = bench_df[list(COLUMNS_MAPPING.keys())]
|
49 |
# rename
|
|
|
54 |
return bench_df
|
55 |
|
56 |
|
57 |
+
# def change_tab(query_param):
|
58 |
+
# query_param = query_param.replace("'", '"')
|
59 |
+
# query_param = json.loads(query_param)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
# if (
|
62 |
+
# isinstance(query_param, dict)
|
63 |
+
# and "tab" in query_param
|
64 |
+
# and query_param["tab"] == "evaluation"
|
65 |
+
# ):
|
66 |
+
# return gr.Tabs.update(selected=1)
|
67 |
+
# else:
|
68 |
+
# return gr.Tabs.update(selected=0)
|
69 |
|
|
|
70 |
|
71 |
+
def submit_query(text, backends, datatypes, threshold, raw_dfs):
|
72 |
+
filtered_dfs = []
|
73 |
+
for raw_df in raw_dfs:
|
74 |
+
# extract the average score (float) from the clickable score (clickable markdown)
|
75 |
+
raw_df["Average H4 Score β¬οΈ"] = raw_df["Average H4 Score β¬οΈ"].apply(
|
76 |
+
extract_score_from_clickable)
|
77 |
+
filtered_df = raw_df[
|
78 |
+
raw_df["Model π€"].str.contains(text) &
|
79 |
+
raw_df["Backend π"].isin(backends) &
|
80 |
+
raw_df["Datatype π₯"].isin(datatypes) &
|
81 |
+
(raw_df["Average H4 Score β¬οΈ"] >= threshold)
|
82 |
+
]
|
83 |
+
filtered_df["Average H4 Score β¬οΈ"] = filtered_df["Average H4 Score β¬οΈ"].apply(
|
84 |
+
make_clickable_score)
|
85 |
|
86 |
+
filtered_dfs.append(filtered_df)
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
return filtered_dfs
|
89 |
|
90 |
|
91 |
# Define demo interface
|
|
|
96 |
|
97 |
with gr.Row():
|
98 |
search_bar = gr.Textbox(
|
99 |
+
label="Model π€",
|
100 |
+
info="Search for a model name",
|
101 |
elem_id="search-bar",
|
102 |
)
|
103 |
backend_checkboxes = gr.CheckboxGroup(
|
104 |
+
label="Backends π",
|
105 |
choices=["pytorch", "onnxruntime"],
|
106 |
value=["pytorch", "onnxruntime"],
|
|
|
107 |
info="Select the backends",
|
108 |
elem_id="backend-checkboxes",
|
109 |
)
|
110 |
datatype_checkboxes = gr.CheckboxGroup(
|
111 |
+
label="Datatypes π₯",
|
112 |
choices=["float32", "float16"],
|
113 |
value=["float32", "float16"],
|
|
|
114 |
info="Select the load datatypes",
|
115 |
elem_id="datatype-checkboxes",
|
116 |
)
|
117 |
|
118 |
with gr.Row():
|
119 |
threshold_slider = gr.Slider(
|
120 |
+
label="Average H4 Score π",
|
121 |
+
info="Filter by minimum average H4 score",
|
122 |
value=0.0,
|
123 |
elem_id="threshold-slider",
|
124 |
)
|
|
|
132 |
|
133 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
134 |
with gr.TabItem("π₯οΈ A100-80GB Benchmark ποΈ", elem_id="A100-benchmark", id=0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
gr.HTML(SINGLE_A100_TEXT)
|
136 |
|
137 |
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
|
|
|
151 |
visible=False,
|
152 |
)
|
153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
# Callbacks
|
155 |
+
submit_button.click(
|
156 |
+
submit_query,
|
157 |
+
[
|
158 |
+
search_bar, backend_checkboxes, datatype_checkboxes, threshold_slider,
|
159 |
+
single_A100_for_search
|
160 |
+
],
|
161 |
+
[single_A100_leaderboard]
|
162 |
+
)
|
163 |
|
164 |
with gr.Row():
|
165 |
with gr.Accordion("π Citation", open=False):
|
|
|
169 |
elem_id="citation-button",
|
170 |
).style(show_copy_button=True)
|
171 |
|
172 |
+
# dummy = gr.Textbox(visible=False)
|
173 |
+
# demo.load(
|
174 |
+
# change_tab,
|
175 |
+
# dummy,
|
176 |
+
# tabs,
|
177 |
+
# _js=get_window_url_params,
|
178 |
+
# )
|
179 |
|
180 |
# Restart space every hour
|
181 |
scheduler = BackgroundScheduler()
|
src/assets/text_content.py
CHANGED
@@ -9,6 +9,14 @@ Anyone from the community can request a model or a hardware+backend configuratio
|
|
9 |
[Config files](https://github.com/huggingface/optimum-benchmark/blob/main/examples/bert.yaml) (which can be used with Optimum-Benchmark) will be available soon for reproduction, questioning and correction of our results.
|
10 |
"""
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results."
|
13 |
CITATION_BUTTON_TEXT = r"""@misc{open-llm-perf-leaderboard,
|
14 |
author = {Ilyas Moutawwakil},
|
|
|
9 |
[Config files](https://github.com/huggingface/optimum-benchmark/blob/main/examples/bert.yaml) (which can be used with Optimum-Benchmark) will be available soon for reproduction, questioning and correction of our results.
|
10 |
"""
|
11 |
|
12 |
+
SINGLE_A100_TEXT = """<h3>Single-GPU (1xA100):</h3>
|
13 |
+
<ul>
|
14 |
+
<li>Singleton Batch (1)</li>
|
15 |
+
<li>Thousand Tokens (1000)</li>
|
16 |
+
</ul>
|
17 |
+
"""
|
18 |
+
|
19 |
+
|
20 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results."
|
21 |
CITATION_BUTTON_TEXT = r"""@misc{open-llm-perf-leaderboard,
|
22 |
author = {Ilyas Moutawwakil},
|
src/utils.py
CHANGED
@@ -60,3 +60,12 @@ def make_clickable_model(model_name):
|
|
60 |
link = OASST_LINK
|
61 |
|
62 |
return model_hyperlink(link, model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
link = OASST_LINK
|
61 |
|
62 |
return model_hyperlink(link, model_name)
|
63 |
+
|
64 |
+
|
65 |
+
def make_clickable_score(score):
|
66 |
+
link = f"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard"
|
67 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{score}</a>'
|
68 |
+
|
69 |
+
|
70 |
+
def extract_score_from_clickable(clickable_score) -> float:
|
71 |
+
return float(clickable_score.split(">")[1].split("<")[0])
|