import gradio as gr import pandas as pd import plotly.express as px FLASHATTENTIONV2_DATA = [ # open llm "Model 🤗", "DType 📥", "Backend 🏭", "Params (B)", "Architecture 🏛️", "Open LLM Score (%)", # deployment settings "DType 📥", "Backend 🏭", "Optimization 🛠️", "Quantization 🗜️", "Optimization 🛠️ FlashAttentionV2", # primary measurements "Prefill (s)", "Prefill (s) FlashAttentionV2", "Decode (tokens/s)", "Decode (tokens/s) FlashAttentionV2", "End-to-End (tokens/s)", "End-to-End (tokens/s) FlashAttentionV2", # speedups "Prefill Speedup (%)", "Decode Speedup (%)", ] def get_fa2_df(llm_perf_df): copy_df = llm_perf_df.copy() # seperate original model experiments from FlashAttentionV2 experiments original_df = copy_df[(copy_df["Optimization 🛠️"] == "None") & (copy_df["DType 📥"] == "float16")] fa2_df = copy_df[(copy_df["Optimization 🛠️"] == "FlashAttentionV2") & (copy_df["DType 📥"] == "float16")] # merge the two dataframes fa2_df = pd.merge( original_df, fa2_df, on=["Model 🤗", "Quantization 🗜️"], suffixes=["", " FlashAttentionV2"], ) # compute speedups fa2_df["Prefill Speedup (%)"] = ((fa2_df["Prefill (s)"] / fa2_df["Prefill (s) FlashAttentionV2"]) * 100).round( 2 ) - 100 fa2_df["Decode Speedup (%)"] = ( (fa2_df["Decode (tokens/s) FlashAttentionV2"] / fa2_df["Decode (tokens/s)"]) * 100 ).round(2) - 100 # filter speedups > 1000% fa2_df = fa2_df[fa2_df["Prefill Speedup (%)"] < 1000] fa2_df = fa2_df[fa2_df["Decode Speedup (%)"] < 1000] return fa2_df def get_fa2_decode_fig(llm_perf_df): fa2_df = get_fa2_df(llm_perf_df) # plot decode_fig = px.box( fa2_df, x="Architecture 🏛️", y="Decode Speedup (%)", color_discrete_sequence=px.colors.qualitative.Light24, custom_data=FLASHATTENTIONV2_DATA, color="Quantization 🗜️", points="all", ) # add hover data decode_fig.update_traces( hovertemplate="
".join( [f"{column}: %{{customdata[{i}]}}" for i, column in enumerate(FLASHATTENTIONV2_DATA)] ) ) # add layout decode_fig.update_layout( title={ "text": "Decode Speedup per Architecture, Compared To Non-Optimized Model", "y": 0.95, "x": 0.5, "xanchor": "center", "yanchor": "top", }, xaxis_title="LLM Architecture", yaxis_title="Decode Speedup (%)", legend_title="Quantization Scheme", width=1200, height=600, ) return decode_fig def get_fa2_prefill_fig(llm_perf_df): fa2_df = get_fa2_df(llm_perf_df) # plot prefill_fig = px.box( fa2_df, x="Architecture 🏛️", y="Prefill Speedup (%)", color_discrete_sequence=px.colors.qualitative.Light24, custom_data=FLASHATTENTIONV2_DATA, color="Quantization 🗜️", points="all", ) # add hover data prefill_fig.update_traces( hovertemplate="
".join( [f"{column}: %{{customdata[{i}]}}" for i, column in enumerate(FLASHATTENTIONV2_DATA)] ) ) # add layout prefill_fig.update_layout( title={ "text": "Prefill Speedup per Architecture, Compared To Non-Optimized Model", "y": 0.95, "x": 0.5, "xanchor": "center", "yanchor": "top", }, xaxis_title="LLM Architecture", yaxis_title="Prefill Speedup (%)", legend_title="Quantization Scheme", width=1200, height=600, ) return prefill_fig def create_fa2_plots(llm_perf_df): # descriptive text gr.HTML("👆 Hover over the points 👆 for additional information.", elem_id="text") # get figures prefill_fig = get_fa2_prefill_fig(llm_perf_df) decode_fig = get_fa2_decode_fig(llm_perf_df) # create plots prefill_plot = gr.components.Plot(value=prefill_fig, elem_id="plot", show_label=False) decode_plot = gr.components.Plot(value=decode_fig, elem_id="plot", show_label=False) return prefill_plot, decode_plot