import os import json import gradio as gr import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from src.assets.text_content import TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT from src.utils import restart_space, load_dataset_repo, make_clickable_model from src.assets.css_html_js import custom_css, get_window_url_params LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard" LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset" OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None) COLUMNS_MAPPING = { "model": "Model 🤗", "backend.name": "Backend 🏭", "backend.torch_dtype": "Datatype 📥", "average": "Average H4 Score ⬆️", "generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️", } COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number", "number"] SORTING_COLUMN = ["Throughput (tokens/s) ⬆️"] llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN) def get_benchmark_df(benchmark): if llm_perf_dataset_repo: llm_perf_dataset_repo.git_pull() # load bench_df = pd.read_csv( f"./llm-perf-dataset/reports/{benchmark}/inference_report.csv") scores_df = pd.read_csv( f"./llm-perf-dataset/reports/average_scores.csv") # merge on model bench_df = bench_df.merge( scores_df, how="left", left_on="model", right_on="model") # preprocess bench_df["model"] = bench_df["model"].apply(make_clickable_model) # filter bench_df = bench_df[list(COLUMNS_MAPPING.keys())] # rename bench_df.rename(columns=COLUMNS_MAPPING, inplace=True) # sort bench_df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True) return bench_df def change_tab(query_param): query_param = query_param.replace("'", '"') query_param = json.loads(query_param) if ( isinstance(query_param, dict) and "tab" in query_param and query_param["tab"] == "evaluation" ): return gr.Tabs.update(selected=1) else: return gr.Tabs.update(selected=0) def submit_query(single_df, multi_df, text, backends, datatypes, threshold): filtered_single = single_df[ single_df["Model 🤗"].str.contains(text) & single_df["Backend 🏭"].isin(backends) & single_df["Datatype 📥"].isin(datatypes) & single_df["Average H4 Score ⬆️"] >= threshold ] filtered_multi = multi_df[ multi_df["Model 🤗"].str.contains(text) & multi_df["Backend 🏭"].isin(backends) & multi_df["Datatype 📥"].isin(datatypes) & multi_df["Average H4 Score ⬆️"] >= threshold ] return filtered_single, filtered_multi # Define demo interface demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Row(): search_bar = gr.Textbox( label="Search 🔎", info="Search for a model and press Submit 🚀", elem_id="search-bar", ) backend_checkboxes = gr.CheckboxGroup( choices=["pytorch", "onnxruntime"], value=["pytorch"], label="Backends 🏭", info="Select the backends", elem_id="backend-checkboxes", ) datatype_checkboxes = gr.CheckboxGroup( choices=["float32", "float16"], value=["float32", "float16"], label="Datatypes 📥", info="Select the load datatypes", elem_id="datatype-checkboxes", ) with gr.Row(): with gr.Box(elem_id="threshold-slider-box"): threshold_slider = gr.Slider( label="H4 Threshold 📈", info="Filter by average H4 score", value=0.0, elem_id="threshold-slider", ) with gr.Row(): submit_button = gr.Button( value="Submit 🚀", info="Submit the filters", elem_id="submit-button", ) with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🖥️ A100-80GB Benchmark 🏋️", elem_id="A100-benchmark", id=0): SINGLE_A100_TEXT = """